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1 Introduction

It was originally the study of permutations of finite sets and their inter-
action that gave rise to the fundamental ideas of group theory. The finite
symmetric groups Sn are thus a classical object of study, and yet some of
their most basic properties still remain elusive. A relatively modern and
fruitful approach to the study of the symmetric groups has been to at-
tempt to understand their representations – that is, to try to understand
them by analysing how they act on vector spaces rather than by studying
them directly. Yet despite the apparent complexity of these groups, their
representation theory is particularly beautiful in its simplicity, requiring
very little representation-theoretic machinery to achieve some significant
results. The flavour of most of the arguments required is combinatorial,
and does not require much background knowledge.

This essay will present an exposition of the very basics of the theory. We
begin by introducing the necessary building blocks, which are often very
simple constructs with a lot of symmetry, and from there go on to build
up the irreducible representations of Sn. We proceed in such a way that
does not heavily depend on the underlying field, and so in particular our
approach is essentially characteristic-free. However, a very powerful tool
in representation theory, which it would be unfair to neglect, is character
theory; so, in the latter half of the essay, we switch to studying the charac-
ters of Sn, and so implicitly restrict our attention to representations over a
field of characteristic 0.

In many cases, the detail of the proofs obscures the simplicity of the ar-
guments and results, so examples of the theory in action have been given
throughout where appropriate.

The bulk of the material in sections 3 and 4 has been adapted from James
[1].

2 Preliminaries

2.1 Notation

Throughout this essay, functions will be written on the left.
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2.2 Representation theory

A representation of a group G is a pair (ρ, V), where V is a vector space
over a field F, and ρ : G → GL(V) is a group homomorphism (i.e. a lin-
ear action of G on V). This can also be characterised slightly differently.
Define the group algebra FG of G over F to be the (unital but not neces-
sarily commutative) ring whose elements are formal finite sums of formal
products a · g for a ∈ F, g ∈ G, with addition defined in the obvious way
and multiplication inherited from G: then a representation of G over F is
equivalently an FG-module.

We will be interested in the irreducible representations of G up to (FG-
module) isomorphism – that is, the representations (ρ, V) such that (ρ|U, U)
is not a representation for any non-trivial subspace U of V. In the language
of FG-modules, a representation V is irreducible if it has no non-trivial sub-
FG-module U.

We will quote a non-trivial result that will be important in finding the
modular representations of Sn:
Lemma 2.2.1. The number of modular irreducible representations of a group
G over a field of characteristic p is equal to the number of p-regular conju-
gacy classes of G.
Proof. See Robinson [2, theorem 12.39].

Finally, the following result will be useful in calculating the character table
of Sn:
Lemma 2.2.2. If W is an irreducible CG-module, then the number of com-
position factors of the CG-module V that are isomorphic to W is dim HomCG(V, W).
Proof. James and Liebeck [3, corollary 11.6].

2.3 Character theory

Given an ordinary representation (ρ, V) of a group G, we can assign to
each element g ∈ G the character χρ(g) ∈ C, defined to be the trace of ρ(g)
(which is well-defined, as ρ(g) : V → V is a linear map). Indeed, as trace
is invariant under conjugation, characters are class functions, i.e. functions
that are constant on conjugacy classes.

Define an inner product ⟨ , ⟩ on the space of all functions G → C by
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⟨α, β⟩ = 1
|G| ∑

g∈G
α(g)β(g),

where the bar denotes complex conjugation. Given two irreducible char-
acters χ1, χ2, it is easy to show that

⟨χ1, χ2⟩ =
{

1 if χ1 = χ2
0 if χ1 ̸= χ2;

as a sort of converse, given a character χ, it can be shown that ⟨χ, χ⟩ = 1
if and only if χ is irreducible [3, theorems 14.12 and 14.20].

Unsurprisingly, isomorphic representations afford the same character. How-
ever, more remarkably, the converse holds; that is, any two ordinary rep-
resentations of G affording the same character must be isomorphic [3, the-
orem 14.21]. Combined with the lemma quoted in the previous section,
these facts imply that the irreducible characters of a group G form an or-
thonormal basis for the C-vector space of class functions on G.

If H is a subgroup of G, restriction of the G-character ψ from G to H always
produces an H-character; this will be written ψ ↓H. We can also define
induction of the H-character θ from H to G: this will be written θ↑G, and
is defined as

θ↑G (g) =
1
|H| ∑

x∈G,
x−1gx∈H

θ(x−1gx).

This produces a G-character. A reciprocity theorem of Frobenius [3, theo-
rem 21.16] says that ⟨θ↑G, ψ⟩ = ⟨θ, ψ↓H⟩, where the first inner product is
taken over G and the second over H.

3 Representations of Sn

Definition. Let n be a positive integer. A partition of n is a finite sequence
λ = ⟨λ1, . . . , λr⟩ of positive integers with λ1 ≥ · · · ≥ λr whose sum is n.

Example. Some partitions of 7 are ⟨7⟩, ⟨2, 2, 1, 1, 1⟩, ⟨5, 2⟩.
Remark. Partitions of n are in natural bijective correspondence with cycle
types in Sn, and hence also with conjugacy classes in Sn.
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3.1 Young tableaux and tabloids

Definition. Let λ = ⟨λ1, . . . , λr⟩ be a partition of n. The (Young) diagram
corresponding to λ is the (r × λ1) matrix with (i, j)-entry ”×” if j ≤ λi,
and blank otherwise; that is, the jth row contains a × in each of the first
λj entries. Brackets around the matrix are often omitted. It will cause no
confusion to identify partitions with their Young diagrams, so we will do
so frequently. Also, we will write (i, j) ∈ λ if the (i, j)-entry of the Young
diagram of λ is ”×”, and (i, j) ̸∈ λ otherwise.

Example. ⟨5, 2⟩ = × × × × ×
× ×

Definition. Let λ be a partition of n. A λ-tableau is the result of replacing
each × in the diagram of λ with an integer from {1, 2, . . . , n} such that
each integer appears exactly once in the resulting matrix. (By convention,
tableaux will be drawn so that their entries are separated by lines of a
grid.)

Example. t1 =
1 6 5 3 2
7 4 and t2 =

3 2 1 5 4
7 6 are ⟨5, 2⟩-tableaux.

Remark. Sn acts on λ-tableaux in the obvious way (by permuting their en-
tries).

Definition. Given a λ-tableau t, define its row stabiliser to be the subgroup
Rt of Sn that fixes each row setwise, and its column stabiliser to be the sub-
group Ct of Sn that fixes each column setwise.

Definition. Two λ-tableaux t1, t2 are equivalent if one can be obtained from
the other by permuting elements in each row but keeping each row fixed
setwise, i.e. if t1 = σ(t2) for some σ ∈ Rt2 . (Of course, this is an equiva-
lence relation: Rt1 = Rt2 .) An equivalence class of a λ-tableau t is called a
λ-tabloid, denoted [t]. (By convention, tabloids will be drawn so that their
rows are separated by lines.)

Example. 1 3 4 6
2 5 =

6 4 1 3
5 2 = . . .

3.2 Specht modules

Definition. Let λ = ⟨λ1, . . . , λr⟩ be a partition of n. Then define the Young
subgroup Sλ ≤ Sn to be any subgroup isomorphic to Sλ1 × · · · × Sλr , i.e.
the row stabiliser of some given λ-tableau t. (Usually Sλ is taken to be the
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row stabiliser of the following tableau:

1 2 3 4 . . .

λ1+1 λ1+2 . . .

λ1+λ2+1 . . .
...

but such a specific choice is entirely unnecessary for our purposes, as the
row stabilisers of any two λ-tableaux are Sn-conjugate.)

Define also the formal F-vector space Mλ with all possible λ-tabloids as
basis elements.

Example. Let λ = ⟨4, 2, 1⟩. A basis element of Mλ can be specified by choos-
ing the four elements in the first row from {1, . . . , 7} and then choosing the
two elements in the second row from the three remaining numbers - that
is, Mλ is a vector space of dimension (7

4) · (
3
2) = 105.

Remark. Mλ is an FSn-module by extending the action of Sn on tabloids
linearly. Of course, Mλ is always an FSn-module of dimension 1, as any
F-basis element can be transformed into any other by applying an element
of Sn.

Definition. Given a λ-tableau t, define the polytabloid

et = ∑
σ∈Ct

sgn(σ) · σ([t]) ∈ Mλ.

That is, et = κt([t]), where κt = ∑
σ∈Ct

sgn(σ) · σ ∈ FSn is the signed column

sum.

Definition. The Specht module Sλ is the sub-FSn-module of Mλ spanned by
polytabloids.

Example. Take λ = ⟨4, 2, 1⟩ again. Take t =
1 2 3 4
5 6
7

.

It is clear that Ct = Sym({1, 5, 7})× Sym({2, 6}), which is a group of order
12, so the orbit of t contains 12 tableaux t = t1, t2, . . . , t12. Writing ti =
σi(t), and ordering the σi so that σ1, . . . , σ6 are the even permutations and
σ7, . . . , σ12 are the odd permutations, it is clear that
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κt = (σ1 + · · ·+ σ6)− (σ7 + · · ·+ σ12).

Hence the polytabloid et is a linear combination of the 12 tableaux ti.

It is natural to ask about the properties of these Specht modules. We pro-
ceed by finding a standard basis for the Specht module as an F-vector
space.

3.2.1 A basis for the Specht module over FSn

We begin by examining what the Specht module looks like as an FSn-
module: this is considerably simpler than as an F-vector space.
Theorem 3.2.1. Sλ is generated by any one polytabloid, i.e. is an FSn-
module of dimension 1.
Proof. Let t be a λ-tableau. Any other λ-tableau can be written as ρ(t) for
some ρ ∈ Sn. Clearly Ct = ρCρ(t)ρ

−1, and so

κρ(t) = ∑
σ∈Cρ(t)

sgn(σ) · σ

= ∑
ρ−1σρ∈Ct

sgn(σ) · σ

= ∑
ρ−1σρ∈Ct

sgn(ρ−1σρ) · σ (sgn is conjugation-invariant)

= ∑
ρ−1σρ∈Ct

sgn(ρ−1σρ) · ρ(ρ−1σρ)ρ−1

= ∑
σ′∈Ct

sgn(σ′) · ρσ′ρ−1

= ρ

[
∑

σ′∈Ct

sgn(σ′) · σ′
]

ρ−1 = ρκtρ
−1.

This gives that

eρ(t) = κρ(t)([ρ(t)])

= ρκtρ
−1 · ρ([t])

= ρet.
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3.2.2 A basis for the Specht module over F

Definition. A tableau t is standard if the entries of t increase along each
row and down each column. A tabloid (viewed as an equivalence class of
tableaux) is standard if it contains a standard tableau. A polytabloid et is
standard if t is standard.

Our aim is to show that the standard polytabloids form a basis for Sλ over
F. We begin by defining a useful total order on λ-tabloids, which will help
us to show linear independence of the standard polytabloids.

Definition. Suppose λ is a partition of n. The sequences of length n con-
taining each of the numbers 1, . . . , n can be endowed with the (total) lex-
icographic order. This induces a total ordering on the λ-tableaux in an
obvious way: a λ-tableau can be considered as a sequence of length n
by reading each row in turn from left to right, starting with the top row
and working down towards the bottom. Hence, for example, the ⟨5, 4, 1⟩-
tableaux are totally ordered as follows:

1 2 3 4 5
6 7 8 9

10
<

1 2 3 4 5
6 7 8 10
9

< · · · <
10 9 8 7 6
5 4 3 2
1

.

This then induces a total ordering on the λ-tabloids. Take two λ-tabloids
[t1], [t2], assuming without loss of generality that t1, t2 are the <-minimal
tableaux in [t1], [t2] respectively. (This assumption is critical!) Then [t1] ≤
[t2] if and only if t1 ≤ t2.
Lemma 3.2.2. If t is a standard tableau, then [t] is the <-minimal tabloid
involved in et.
Proof. Any other tabloid involved in et corresponds to a tableau s which
can be obtained from t by permuting entries in each column (and then,
without loss of generality, reordering the elements in each row of s so that
they are increasing along the row). Consider the first row in s (reading
from left to right, top to bottom, as before) which differs from the corre-
sponding row in t, and reorder the elements in this row of s so that they
are in increasing order. As t is standard, a permutation of the columns
cannot decrease any entry in this row; hence we must have that each entry
in this row of t is less than or equal to the corresponding entry of s. So
[t] ≤ [s].
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Lemma 3.2.3 (linear independence). Let et1 , . . . , etk be standard polytabloids,
with all ti distinct. Then the eti are linearly independent.
Proof. Given that the ti are all distinct standard tableaux, we cannot obtain
tj from ti by permuting the elements of each row (for i ̸= j), so that all
the [ti] are distinct standard tabloids. The proof is now trivial: suppose,
without loss of generality, that et1 is the <-minimal of these k polytabloids.
Then, given any linear combination a1et1 + · · ·+ aketk ∈ Sλ, the coefficient
of [t1] is a1, so we must have a1 = 0. Now induction on k gives the required
result.

It now remains to prove that the standard polytabloids span Sλ.

Remark. The tabloid [t] is the row equivalence class of t. We can also define
{t}, the column equivalence class of a tableau t. Note that tableaux, and
hence also column equivalence classes, have a total ordering⪯ in a similar
way to ≤ on the tabloids: read each column from top to bottom, starting
with the leftmost column and working towards the right. (This is essen-
tially the transpose of the≤ ordering.) It is also worth noting that a column
equivalence class {t} determines a polytabloid et uniquely up to sign: if
{s} = {t}, then s = σ(t) for some σ ∈ Ct, so es = eσ(t) = σ(et) = ±et. In
particular, if {s} is ⪯-minimal, then es = ±es0 , where s0 is the ⪯-minimal
tabloid; s0 is standard, and so es is standard.
Lemma 3.2.4 (spanning). Any polytabloid can be written as a linear combi-
nation of the standard polytabloids.
Proof. Let λ be a fixed partition of n.

Suppose t is a λ-tableau: we aim to show that et can be written as a linear
combination of standard polytabloids. (Without loss of generality, we may
reorder the elements in each column of t to be in increasing order down
the column, since if σ ∈ Ct, we know that

eσ(t) = σ(et) = σ ∑
τ∈Ct

sgn(τ)τ([t]) = ±et,

and replacing et by a multiple of et does not affect the result.)

We first make the trivial remark that, if t is standard, we are done, so as-
sume henceforth that t is not standard. As t is not standard, there must
be two adjacent columns, say ck and ck+1, whose entries are a1 < a2 <
· · · < ar and b1 < b2 < · · · < bs respectively, such that aq > bq for some
q and ck is to the left of ck+1, so that the qth row is non-increasing. Hence
b1 < b2 < · · · < bq < aq < · · · < ar.
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Define A = {aq, aq+1, . . . , ar}, B = {b1, b2, . . . , bq}. We have two Sn-subgroups
SA × SB ≤ SA∪B: take a (left) transversal T of SA × SB in SA∪B containing
id and define the Garnir element of T to be GT = ∑

σ∈T
sgn(σ)σ. Define also

φ = ∑
τ∈SA×SB

sgn(τ)τ, ψ = ∑
τ∈SA∪B

sgn(τ)τ,

and note the following:

(i) GT φ =

(
∑

σ∈T
sgn(σ)σ

)(
∑

τ∈SA×SB

sgn(τ)τ

)
= ∑σ,τ sgn(στ) · (στ) = ψ (by definition of T )

(ii) φκt =

(
∑

τ∈SA×SB

sgn(τ)τ

)(
∑

ρ∈Ct

sgn(ρ)ρ

)
= ∑τ,ρ sgn(τρ) · (τρ) = |SA × SB|κt

(as SA × SB ⊆ Ct, so fixing τ and summing over ρ gives one copy of
κt).

Hence

(iii) ψ(et)
(i)
= GT φ(et) = GT φκt([t])

(ii)
= |SA × SB|GT κt([t])

= |SA × SB|GT (et).

But, given τ ∈ Ct, there are two numbers, say α, β, in A ∪ B that are in
the same row of τ(t), so that

(
α β

)
[τ(t)] = [τ(t)]. Then every element

of SA∪B is either even or can be written uniquely as the product of some
even permutation with

(
α β

)
. So

ψ = ∑
σ∈SA∪B,
σ even

σ− ∑
σ∈SA∪B,
σ even

σ
(
α β

)
=
∼
σ(id−

(
α β

)
),

where
∼
σ is the sum of all the even permutations in SA∪B, and so ψ([τ(t)]) =

0 for each τ ∈ Ct. This shows that ψ(et) = 0, and so by (iii), we have that
GT (et) = 0. We can write this out in full, separating the term correspond-
ing to σ = id, and noting (by theorem 3.2.1) that σ(et) = eσ(t):
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et + ∑
id ̸=σ∈T

sgn(σ)eσ(t) = 0.

That is, we have proven that et is a linear combination of the eσ(t) for id ̸=
σ ∈ T . However, it still remains to show that we can write et as a linear
combination of standard polytabloids: for this, we use the remark made
directly before this lemma.

Take any id ̸= σ ∈ T : then σ is an element of SA∪B, and there exist ai ∈
A, bj ∈ B such that σ(ai) = bj (otherwise σ is an element of SA × SB. But
b1 < b2 < · · · < bq < aq < · · · < ar; that is, σ replaces some elements in
the column ck with smaller elements from ck+1. Hence, with notation as in
the remark, we have that {σ(t)} ≺ {t}. This shows that we can write et as
a linear combination of some eσ(t) with {σ(t)} ≺ {t}.

Now we simply need to recall that, when {s} is⪯-minimal, es is a standard
polytabloid; this proves the theorem by induction on the ⪯ ordering, as
iterating the above procedure will eventually write et in terms of standard
polytabloids.

To summarise, we have proven:
Theorem 3.2.5. The standard polytabloids form a basis for Sλ.

Example. Once again, take λ = ⟨4, 2, 1⟩. Then the dimension of Sλ as an F-
vector space is the number of standard polytabloids, which is the number
of standard tableaux.

Let t =
a1 a2 a3 a4
a5 a6
a7

be a standard λ-tableau. That is, the ai are par-

tially ordered as follows:

Choosing a standard λ-tableau is equivalent to choosing an ordering for

10



the ai. Note that we must always have a1 = 1. We can list the possible
orderings of a2, a3, a4, a5, a6 systematically according to the position of a5:

• a2 < a3 < a4 < a5 < a6

• a2 < a3 < a5 < a4 < a6

• a2 < a3 < a5 < a6 < a4

• a2 < a5 < a3 < a4 < a6

• a2 < a5 < a3 < a6 < a4

• a2 < a5 < a6 < a3 < a4

• a5 < a2 < a3 < a4 < a6

• a5 < a2 < a3 < a6 < a4

• a5 < a2 < a6 < a3 < a4

Now we need to choose a position for a7 for each of these possibilities. But
the only constraint on a7 is that it comes later than a5. So, for each of these
possibilities, a7 can assume any one of 2, 3, 3, 4, 4, 4, 5, 5 and 5 positions
respectively.

This gives a total of 35 standard tableaux, and hence the Specht module
S⟨4,2,1⟩ has dimension 35 over F.

3.3 Some combinatorial results

The results in this section are not interesting in their own right for our
purposes, but are critical for several proofs later, so we derive them all
together at this point for convenience.
Lemma 3.3.1. Let λ, µ be partitions of n, and suppose that t1 is a λ-tableau.
If we can find a µ-tableau t2 such that, for every i, the numbers in the ith
row of t2 belong to different columns of t1, then λ ≥ µ.
Proof. Pick one number from each column of t1, and try to put them in the
first row of t2; that is, we have λ1 numbers to fit into µ1 spaces. If they
fit, we must have λ1 ≥ µ1. Cross out all the used numbers in t1. Now
pick one unused number from each remaining column of t1, and try to put
them into the second row of t2; if they fit, we have λ1 + λ2 ≥ µ1 + µ2, and
so λ2 ≥ µ2. Continuing in this way gives us λ ≥ µ.
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Lemma 3.3.2. Let λ, µ be partitions of n, and suppose that t1 is a λ-tableau
and t2 is a µ-tableau such that κt1([t2]) ̸= 0. Then λ ≥ µ.
Proof. If a, b are two numbers in the same row of t2, then clearly [t2] =
[
(
a b

)
t2] =

(
a b

)
[t2].

Now suppose that a, b are in the same column of t1; then
(
a b

)
∈ Ct1 . Let

H be the subgroup of Ct1 generated by
(
a b

)
; then H is a group of order 2,

and each left coset contains precisely one even permutation and one odd
permutation. Let σ1, . . . , σk be a complete list of the even permutations
without repetitions; then σ1

(
a b

)
, . . . , σk

(
a b

)
is a complete list of the

odd permutations without repetitions. Hence

κt1 = ∑
σ∈Ct

sgn(σ) · σ

=
k

∑
i=1

sgn(σi) · σi︸ ︷︷ ︸
even terms

+
k

∑
i=1

sgn(σi
(
a b

)
) · σi

(
a b

)
︸ ︷︷ ︸

odd terms

=
k

∑
i=1

σi(id−
(
a b

)
),

so that

κt1([t2]) =
k

∑
i=1

σi(id−
(
a b

)
)([t2])

=
k

∑
i=1

σi([t2]−
(
a b

)
[t2])

= 0,

which contradicts our initial assumption. Hence all elements in any given
row of t2 lie in different columns of t1; now invoke lemma 3.3.1.
Lemma 3.3.3. Suppose that t is a λ-tableau and u ∈ Mλ. Then κt(u) is a
multiple of et.
Proof. First we will prove the statement in the case where u is a single
tabloid. Let t1 = t, and let t2 be another λ-tableau. If κt1([t2]) = 0, then
clearly it is a multiple of et; otherwise, the same argument as the start of
the proof of lemma 3.3.2 shows that the numbers in each row of t2 belong
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to different columns of t1. Hence there is some σ ∈ Ct1 such that the ele-
ments in each row of σ(t1) are also in the corresponding row of t2 – that
is, σ([t1]) = [t2]. So κt1([t2]) = κt1σ([t1]). But κt1σ = ±κt1 , as σ ∈ Ct1 . So
κt1([t2]) is a multiple of κt1([t1]) = et1 .

Now, given a general u ∈ Mλ, we can simply write u as a formal linear
combination of λ-tabloids and apply the above to each tabloid, and the
result follows immediately.

3.4 p-regularity

Throughout this section, F is a field of characteristic p.

Remark. This is the first point in section 3 at which we take into account
the characteristic of the field F.

Definition. A partition λ of n is p-singular if it contains p rows all of the
same length; otherwise it is p-regular.

Example. Consider λ = ⟨5, 3, 2, 2, 2, 2, 2, 2︸ ︷︷ ︸
6 copies of the same number

, 1⟩:

× × × × ×
× × ×
× ×
× ×
× ×
× ×
× ×
× ×


As λ has 6 rows of the same length, it is p-singular for all
p ≤ 6 and p-regular for all p > 6.

×
Definition. A conjugacy class in Sn is p-singular if any element has order
divisible by p; otherwise it is p-regular.
Theorem 3.4.1. The p-regular partitions of n are in bijection with the p-
regular conjugacy classes of Sn (justifying the overloading of the term ”p-
regular”).
Proof. Consider the formal power series q(X) whose coefficient of Xn is
the number of p-regular conjugacy classes of Sn. Equivalently, this is the
number of cycle types not including any cycles of length divisible by p, i.e.
the number of partitions of n not containing any rows of length divisible
by p. It is easily checked that
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q(X) = ∏
p̸ |i

(1 + Xi + (Xi)2 + (Xi)3 + . . . ),

where the partition ⟨α1, . . . , α1︸ ︷︷ ︸
m1 times

, α2, . . . , αr−1, αr, . . . , αr︸ ︷︷ ︸
mr times

⟩ of n (where α1 >

α2 > · · · > αr) corresponds to the contribution of (Xα1)m1 . . . (Xαr)mr (and
all other factors 1) towards the coefficient of Xn, since p̸ | α1, . . . , αr.

By multiplying both sides by the ’missing’ factors corresponding to p|i, we
get

q(X) ·
∞

∏
i=1

(1 + Xpi + (Xpi)2 + . . . ) =
∞

∏
i=1

(1 + Xi + (Xi)2 + . . . ).

But 1 + X j + (X j)2 + · · · = (1− X j)−1, and so

q(X) ·
∞

∏
i=1

(1− Xpi)−1 =
∞

∏
i=1

(1− Xi)−1.

That is,

q(X) =
∞

∏
i=1

(
1− Xip

1− Xi

)
=

∞

∏
i=1

(1 + Xi + X2i + · · ·+ X(p−1)i).

As before, the partition ⟨α1, . . . , α1︸ ︷︷ ︸
m1 times

, α2, . . . , αr−1, αr, . . . , αr︸ ︷︷ ︸
mr times

⟩ of n can be seen

to correspond to the contribution of (Xm1α1) . . . (Xmrαr) (and all other fac-
tors 1) towards the coefficient of Xn. But a partition is p-regular if and only
if all mi < p. So, from this new product formula for q(X), we can deduce
that the coefficient of Xn is the number of p-regular partitions of n.

3.5 Irreducible representations of Sn

Definition. Given a partition λ of n, there is a unique form ⟨ , ⟩ on Mλ

which is defined on tabloids by
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⟨[t1], [t2]⟩ =
{

1 if [t1] = [t2]
0 if [t1] ̸= [t2]

and extended linearly. (This form is clearly symmetric, bilinear, Sn-invariant
and non-degenerate.) For a submodule V of Mλ, write V⊥ to mean the
submodule of Mλ consisting of all elements u with ⟨u, v⟩ = 0 for all v ∈ V.
(This is a slight abuse of notation: ⟨ , ⟩ is not an inner product unless we
are working over a field of characteristic 0, so V ∩V⊥ may be a non-trivial
subspace of Mλ!)
Lemma 3.5.1. For u, v ∈ Mλ and any λ-tableau t, we have ⟨κt(u), v⟩ =
⟨u, κt(v)⟩.
Proof.

⟨κt(u), v⟩ = ⟨ ∑
σ∈Ct

sgn(σ)σ(u), v⟩

= ∑
σ∈Ct

sgn(σ)⟨σ(u), v⟩

= ∑
σ∈Ct

sgn(σ)⟨u, σ−1(v)⟩

= ∑
σ−1∈Ct

sgn(σ−1)⟨u, σ−1(v)⟩

= ⟨u, ∑
σ−1∈Ct

sgn(σ−1)σ−1(v)⟩

= ⟨u, κt(v)⟩.

We will need one final combinatorial result:
Lemma 3.5.2. Let t be a λ-tableau; let t′ be the λ-tableau obtained by re-
versing the order of the entries in each row of t (the reverse of t). Then
κt(et′) = het for some constant h, and p|h if and only if λ is p-singular.
Proof. Lemma 3.3.3 immediately gives that κt(et′) = het for some h. It is
also easy to see that h = ⟨het, [t]⟩ = ⟨κt(et′), [t]⟩,
which (by lemma 3.5.1) is equal to ⟨et′ , κt([t])⟩, which is just ⟨et′ , et⟩. We
now attempt to find h by evaluating this inner product, which simply
counts the number of tabloids involved in both et′ and et.

Suppose λ = ⟨α1, . . . , α1︸ ︷︷ ︸
m1 times

, α2, . . . , αr−1, αr, . . . , αr︸ ︷︷ ︸
mr times

⟩ as above. Take some el-

ement σ ∈ Ct: clearly [σ(t)] is involved in et, and we wish to determine
whether it is involved in et′ , i.e. whether it is [τ(t′)] for some τ ∈ Ct′ .
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Suppose σ moves an element in one row to a row of a different length;
without loss of generality, i is an element of a row r1 of length α1 and σ(i)
lies in a row r2 of length α2. Then i cannot be any of the (α1− α2) elements
at the end of r1 in t, i.e. the cells marked with a ⊗ here:

row r1 → . . . . . . ⊗ ⊗ . . . . . . ⊗
row r2 → . . . . . . .

Now let σ(i) = j, and consider t′. The disallowed values for i found above
are still marked:

row r1 → ⊗ . . . . . . ⊗ . . . . . . . . . . . .
row r2 → . . . . . . . . . . . . .

Now τ−1(j) must be back in row r1, which shows that j cannot be any
entry in r2 below a cell marked with a ⊗ in r1 (as they would give rise
to disallowed values for i). Hence we have reduced the possible allowed
values for both i and j by at least 1, and r1 still contains more allowed
values than r2. Repeating this algorithm eventually shows that no value
of i is allowed!

This contradicts our initial assumption that σ could move elements be-
tween rows of different lengths. Hence any σ such that [σ(t)] is involved
in et′ must only permute elements in rows of the same length. It is also
easy to see that, if σ only permutes elements in rows of the same length,
then σ ∈ Ct ∩ Ct′ , so [σ(t)] = [σ(t′)] is certainly involved in et′ .

Hence the number of tabloids common to both et and et′ is the number of

such σ ∈ Ct, which is h =
r

∏
i=1

(mi!)αi , since within each block of rows of

length αi, Ct can permute each column freely, i.e. can act like a copy of Smi
on each column. This explicit formula for h shows that p|h if and only if
some mi ≥ p, i.e. if λ is p-singular.
Theorem 3.5.3. If U is a submodule of Mλ, then either Sλ ⊆ U or
U ⊆ (Sλ)⊥.
Proof. If every u ∈ U and every λ-tableau t has κt(u) = 0, then

⟨u, et⟩ = ⟨u, κt([t])⟩ = ⟨κt(u), [t]⟩ = 0

by lemma 3.5.1. As Sλ is generated by et, this shows that U ⊆ (Sλ)⊥. But
if we can find some u and t such that κt(u) ̸= 0, then by lemma 3.3.3, we
know that κt(u) is a non-zero multiple of et, and hence is in Sλ.
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Definition. For each partition λ of n, define Dλ =
Sλ

Sλ ∩ (Sλ)⊥
.

Theorem 3.5.4. If Dλ ̸= 0, then Dλ is absolutely irreducible.
Proof. Let e1, . . . , ek be a basis of polytabloids for Sλ, and let ε1, . . . , εk be the
dual basis for (Sλ)∗. Define θ : Sλ → (Sλ)∗ by u 7→ ψu, where ψu(v) =
⟨u, v⟩. Then ψei(ej) = ⟨ei, ej⟩, so ψei = ∑

j
⟨ei, ej⟩ε j. So the matrix of θ with

respect to these bases is G = (⟨ei, ej⟩)i,j, and the rank of G is the dimension
of the image of θ.

However, the kernel of θ is just the set of elements u ∈ Sλ such that
ψu(v) = 0 for all v – that is, Sλ ∩ (Sλ)⊥, and Sλ/ ker θ = Dλ. From this
we see that dim Dλ = rank(G). But the entries of G are inner products
of polytabloids, which are sums of +1 and −1, so the entries of G always
lie in the prime subfield of F. Hence the rank of G will not change if F is
extended to a bigger field, so the dimension of Dλ will also remain con-
stant.

From now on, we will assume that the ground field F has characteristic
p, where p is either a prime or ∞. (The case p = ∞ is the case where F
contains Q as a subfield, usually called ”characteristic 0”, but this non-
standard notation is more convenient for our purposes.)
Lemma 3.5.5. Dλ = 0 if and only if λ is p-singular.
Proof. Dλ = 0, i.e. Sλ ⊆ (Sλ)⊥, if and only if ⟨et1 , et2⟩ = 0 ∈ F for every
pair of polytabloids in Sλ. Equivalently, Dλ = 0 if and only if p|gλ, where
gλ is defined as the highest common factor of all of the ⟨et1 , et2⟩ ∈ Z for
every pair of polytabloids in Sλ, when the inner product is calculated over
a field of characteristic 0.

Clearly gλ

∣∣∣∣∣ r

∏
i=1

(mi!)αi as in the proof of lemma 3.5.2, because gλ|⟨et, et′⟩ for

some tableau t and its reverse t′; so, if λ is p-regular, then Dλ ̸= 0.

Conversely, we can define an equivalence relation∼ on the set of λ-tabloids:
[t1] ∼ [t2] if we can obtain t2 from t1 by swapping rows of equal size;
clearly, if [t1] is involved in et and [t1] ∼ [t2] then [t2] is also involved in et.

Using the notation of lemma 3.4.1, the equivalence classes have size
r

∏
i=1

mi!,

so any two polytabloids es1 , es2 have a multiple of this many tabloids in
common up to sign. But the coefficients of [t1] and [t2] will either always
be the same or always be opposite, depending only on [t1] and [t2], not
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on s1 and s2. If they are the same, the equivalence class will contribute
∏ mi! to the inner product of es1 and es2 ; otherwise the class will contribute
−∏ mi!.

This shows that the inner product will evaluate to a multiple of ∏ mi!, and
so ∏ mi!|gλ. Hence if λ is p-singular, then Dλ = 0.
Lemma 3.5.6. Let λ and µ be partitions of n, with λ p-regular. Let U ≤ Mµ

be a submodule. If there exists a non-zero FSn-homomorphism
θ : Sλ → Mµ/U, then λ ≥ µ.
Proof. Let t be a λ-tableau, and let t′ be its reverse.

Then κt(et′) = het for some constant h ̸= 0 ∈ F (lemma 3.5.2), and so
κt(θ(et′)) = θ(κt(et′)) = hθ(et). But Sλ is generated by et (lemma 3.2.1),
and θ is non-zero, so κt(θ(et′)) ̸= 0 ∈ Mµ/U. Hence there must be some µ-
tableau s such that κt([s]) ̸= 0 ∈ Mµ, and so lemma 3.3.2 applies, showing
that λ ≥ µ.
Theorem 3.5.7. The irreducible representations of Sn are precisely the Dλ,
where λ ranges through the p-regular partitions of n.
Proof. We have shown that the Dλ are irreducible; it remains to show that
they are distinct. Suppose that Dλ ≃ Dµ as FSn-modules. Then we have a
map

Sλ
πλ
↠

Sλ

Sλ ∩ (Sλ)⊥
= Dλ ∼−→ Dµ =

Sµ

Sµ ∩ (Sµ)⊥
↪→ Mµ

Sµ ∩ (Sµ)⊥
,

where πλ is the canonical projection map. Dλ is non-zero, so πλ has non-
zero image, and all of the other maps are injective, so this composite is
non-zero; it is an FSn-homomorphism as each of its factors is. So the pre-
vious lemma applies, showing that λ ≥ µ. Similarly µ ≥ λ, so in fact
λ = µ.

4 Characters of Sn

4.1 Notation

In this section, we will use the following notation.

• The ordinary irreducible character of Sn corresponding to the parti-
tion λ will be denoted by χλ : Sn → C.
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• The trivial character of a group G will be denoted by 1G.

• The value of the character χλ on an element of cycle type µ will be
denoted χλ(µ).

• If λ is a partition of n, the Sn-conjugacy class of elements of cycle
type λ will be written ccl(λ).

4.2 Calculation of the ordinary character table

Suppose we wish to evaluate the character table X = (χλ(µ)) of Sn, where
λ and µ run through a complete set of partitions of n. To begin, it will be
helpful to give the set of partitions of n a total ordering: we will take the
lexicographic ordering, so that, for example,

⟨1, 1, 1, 1, . . . , 1⟩ < ⟨2, 1, 1, . . . , 1⟩ < ⟨2, 2, . . . , 1⟩ < · · · < ⟨n− 1, 1⟩ < ⟨n⟩.
The method by Fox and Mullineux requires two auxiliary matrices A and
B, defined as follows:

• A = (aλ,µ), where aλ,µ = |Sλ ∩ ccl(µ)|, i.e. the number of elements
of cycle type µ in Sλ, and

• B = (bλ,µ), where bλ,µ = |Sµ|⟨χλ,1Sµ
↑Sn⟩, i.e. the number of times

χλ appears as a summand of 1Sµ
↑Sn when written as a sum of irre-

ducibles,

where Sλ and Sµ are Young subgroups, as defined earlier.

The matrix A is easy to calculate.

Example. The partitions of 4 are ⟨1, 1, 1, 1⟩, ⟨2, 1, 1⟩, ⟨2, 2⟩, ⟨3, 1⟩, ⟨4⟩. Call
these λ1, . . . , λ5 respectively. For example, to evaluate aλ4,λ2 , we need to
count the number of elements of cycle type λ2 in Sλ4 , i.e. the number of
transpositions in S3, which is 3. The matrix A for S4 is given below:

aλ,µ λ1 λ2 λ3 λ4 λ5
λ1 1 0 0 0 0
λ2 1 1 0 0 0
λ3 1 2 1 0 0
λ4 1 3 0 2 0
λ5 1 6 3 8 6

The matrix B is slightly more difficult to calculate. Introduce a new matrix:
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• M = (mλ,µ), where mλ,µ = δλµ

(
n!

|ccl(λ)|

)
and δ is the Kronecker

delta.

We will calculate B with the help of a few lemmas:
Lemma 4.2.1. XAT = B.
Proof.

bλ,ν = |Sν|⟨χλ,1Sν
↑Sn⟩

= |Sν|⟨χλ↓Sν
,1Sν
⟩ (Frobenius reciprocity)

= ∑
g∈Sν

(χλ(g) · 1Sν
(g)︸ ︷︷ ︸

=1

) (by definition of inner product)

= ∑
µ

(
χλ(µ) · |Sν ∩ ccl(µ)|

)
(as χλ is constant on Sν ∩ ccl(µ))

= ∑
µ

(
χλ(µ) · aν,µ

)
= (XAT)λ,ν.

Lemma 4.2.2. BTB = AMAT.
Proof. The characters {χµ|µ a partition of n} form a basis for the class func-
tions on Sn, and so we may write 1Sλ

↑Sn= ∑µ cµχµ, 1Sν
↑Sn= ∑µ dµχµ, for

some constants cµ, dµ. By noting that this basis is orthonormal with respect
to the inner product on characters, it is clear that

∑
µ

⟨χµ,1Sλ
↑Sn⟩⟨χµ,1Sν

↑Sn⟩ = ∑
µ

cµdµ = ⟨1Sλ
↑Sn ,1Sν

↑Sn⟩.
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Hence

(BTB)λ,ν = ∑
µ

bµ,λbµ,ν

= ∑
µ

|Sλ|⟨χµ,1Sλ
↑Sn⟩ · |Sν|⟨χµ,1Sν

↑Sn⟩

= |Sλ||Sν|⟨1Sλ
↑Sn ,1Sν

↑Sn⟩ (by the above)

= |Sλ||Sν|⟨(1Sλ
↑Sn)↓Sν

,1Sν
⟩ (Frobenius reciprocity)

= |Sλ| ∑
g∈Sν

1Sλ
↑Sn (g)1Sν

(g) (by definition of inner product)

= |Sλ| ∑
g∈Sν

1Sλ
↑Sn (g)

= |Sλ| ∑
g∈Sν

 1
|Sλ| ∑

x∈Sn,
x−1gx∈Sλ

1Sλ
(x−1gx)

 (by definition of induction)

= ∑
g∈Sν

∑
x∈Sn,

x−1gx∈Sλ

1Sλ
(x−1gx)

= ∑
g∈Sν

∑
x∈Sn,

x−1gx∈Sλ

1Sλ
(g) (as 1Sλ

is constant on ccl(g))

= ∑
g∈Sν

#{x ∈ Sn|x−1gx ∈ Sλ} .

Now note that the set {x ∈ Sn|x−1gx ∈ Sλ} forms a group which acts on
Sλ by conjugation, and so by the orbit-stabiliser theorem, its order is

#{x−1gx ∈ Sλ} · #{x ∈ Sn|x−1gx = g}
= |Sλ ∩ ccl(g)| · |stabSn(g)|.
But we also have that Sn acts on itself by conjugation, and

|Sn| = |orbSn(g)| · |stabSn(g)|, i.e.

|stabSn(g)| = n!
|ccl(g)| .

Hence
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(BTB)λ,ν = ∑
g∈Sν

#{x ∈ Sn|x−1gx ∈ Sλ}

= ∑
g∈Sν

|Sλ ∩ ccl(g)| · n!
|ccl(g)|

= ∑
µ

n!
|ccl(µ)| · |Sλ ∩ ccl(µ)| · |Sν ∩ ccl(µ)|

= ∑
µ

n!
|ccl(µ)| · aλ,µ · aν,µ

= ∑
µ

n!
|ccl(µ)| · aλ,µ ·

(
∑
ξ

δµ,ξ aν,ξ

)
= ∑

µ,ξ
aλ,µ ·mµ,ξ · aν,ξ = (AMAT)λ,ν.

Lemma 4.2.3. B is lower triangular with non-negative entries.
Proof. ⟨χλ,1Sµ

↑Sn⟩, the number of times χλ appears in the character of Mµ,
is always non-negative. Additionally, lemmas 3.5.6 and 2.2.2 show that
the composition factors of Mµ can only be some of the Sλ for λ ≥ µ, so
⟨χλ,1Sµ

↑Sn⟩ = 0 whenever λ < µ.

If we know A, we can try to evaluate B. It follows from these two lem-
mas that B is easy to evaluate - starting from the bottom-right element
and working from right-to-left, we can evaluate the entire last row of B
element-by-element, with each equation having only one unknown (as B
is lower triangular) and a unique solution (as the elements of B are non-
negative). We can then continue up the rows. This is most easily illustrated
with an example!

Example. Continuing with the example of S4, we now know that B takes
the form

B =


b1,1 0 0 0 0
b2,1 b2,2 0 0 0
b3,1 b3,2 b3,3 0 0
b4,1 b4,2 b4,3 b4,4 0
b5,1 b5,2 b5,3 b5,4 b5,5

,

where bi,j means bλi,λj . It is trivial to evaluate M and hence AMAT, which
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in this case turns out to be

AMAT =


24 24 24 24 24
24 28 32 36 48
24 32 48 48 96
24 36 48 72 144
24 48 96 144 576

.

We need to solve the matrix equation BTB = AMAT for B. In full, we need
to solve:

b1,1 b2,1 b3,1 b4,1 b5,1
0 b2,2 b3,2 b4,2 b5,2
0 0 b3,3 b4,3 b5,3
0 0 0 b4,4 b5,4
0 0 0 0 b5,5




b1,1 0 0 0 0
b2,1 b2,2 0 0 0
b3,1 b3,2 b3,3 0 0
b4,1 b4,2 b4,3 b4,4 0
b5,1 b5,2 b5,3 b5,4 b5,5

 =


24 24 24 24 24
24 28 32 36 48
24 32 48 48 96
24 36 48 72 144
24 48 96 144 576


for each bi,j. (In principle, this is 15 equations – one of which is quintic – in
15 unknowns, but choosing the equations in a sensible order reduces them
to 15 linear equations each in one unknown!) Proceed as follows:

• Start in the bottom-right corner and equate the (5, 5)-elements of BTB
and AMAT: this gives us the equation b2

5,5 = 576, from which we can
deduce that b5,5 = 24.

• Now we can consider the (5, i)-elements for each i = 1, 2, 3, 4. These
give us the values of b5,ib5,5, i.e. 24b5,i, so we can immediately calcu-
late the b5,i. Now we have found the whole of the bottom row!

• Continue with the (4, 4)-element and then the fourth row...

Eventually, we get:

B =


1 0 0 0 0
3 2 0 0 0
2 2 4 0 0
3 4 4 6 0
1 2 4 6 24

.

Lemma 4.2.4. A is invertible.
Proof. A is lower triangular: if λ < µ in the lexicographic ordering, then
Sλ contains no elements of cycle type µ; however, for each λ, Sλ clearly
contains at least one element of cycle type λ, so the diagonal elements of
A are all non-zero. Hence the determinant of A is non-zero.
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Combining this result with lemma 4.2.1, we have proven:
Theorem 4.2.5. The ordinary character table is given by X = B(AT)−1.

Example. Finally, the character table for S4 is

X =


1 −1 1 1 −1
3 −1 −1 0 1
2 0 2 −1 0
3 1 −1 0 −1
1 1 1 1 1

.

Of course, the character table is much more commonly seen with a slightly
different ordering of the rows:

λ1 λ2 λ3 λ4 λ5
1S5 = χ1 λ5 1 1 1 1 1
sgn = χ2 λ1 1 -1 1 1 -1

χ3 λ4 3 1 -1 0 -1
χ2 · χ3 = χ4 λ2 3 -1 -1 0 1

χ5 λ3 2 0 2 -1 0

This method is a fairly efficient method of finding the entire character ta-
ble, as it mostly consists of basic matrix manipulation that a computer can
handle easily. It is, of course, horrendously inefficient if we only need to
work out a single element in the table. However, due to Murnaghan and
Nakayama, there is a much more efficient method of doing this, often even
efficient enough be performed fairly quickly by hand for reasonably small
symmetric groups. The following sections will introduce and demonstrate
this method.

4.3 The Murnaghan-Nakayama rule

4.3.1 Hooks and skew-hooks

Definition. Let λ be a partition of n. If (i, j) ∈ λ, the (i, j)-hook of λ is the
union of the (i, j)-node of the Young diagram of λ along with all those
nodes (i, j + a), (i + b, j) ∈ λ for a, b > 0, i.e. the nodes to the right of and
below the (i, j)-node. The height of the (i, j)-hook h is the number of nodes
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strictly below (i, j) that are in λ, denoted ht(h); the size of the (i, j)-hook is
the number of nodes in the hook.

Example. The (1, 2)-hook of ⟨6, 3, 3, 2⟩ has height 3 and size 8:

× ⊗ ⊗ ⊗ ⊗ ⊗ ← row 1

× ⊗ ×
× ⊗ ×
× ⊗

↑
col 2

Definition. Similarly, the (i, j)-skew hook of λ is the unique connected part
of λ whose endpoints are the same as those of the (i, j)-hook but which
must crawl strictly along the lower-right edge of λ. The height and size of
the (i, j)-skew hook are the same as those of the (i, j)-hook.

Example. The (1, 2)-skew hook of ⟨6, 3, 3, 2⟩:
× × ⊗ ⊗ ⊗ ⊗ ← row 1

× × ⊗
× ⊗ ⊗
× ⊗

↑
col 2

It is easy to see that, if we remove every node of a skew hook from the
Young diagram of a partition, we are left with a valid diagram that corre-
sponds to another partition. For example, removing the (1, 2)-skew hook
from ⟨6, 3, 3, 2⟩ above would leave us with the diagram for ⟨2, 2, 1, 1⟩. We
will denote this removal of the skew-hook h from the partition λ by λ− h;
so, if λ is a partition of n, and h is a skew-hook of λ of size k, then λ− h is
a partition of n− k.

4.3.2 Statement of the rule

The Murnaghan-Nakayama rule gives a simple relation between entries
in the character table of Sn and entries in the character tables of smaller
symmetric groups - in particular, it relates the character associated with
a partition λ to the characters associated with the partitions obtained by
removing skew hooks from λ. It can be used recursively to calculate a
single entry in the character table of Sn.
Theorem 4.3.1. (The Murnaghan-Nakayama rule.) Suppose λ and µ =
⟨µ1, . . . , µs⟩ are partitions of n, and σ ∈ Sn is an element of cycle type µ.
Further, let µ′ = ⟨µ2, . . . , µs⟩ be the partition of n− µ1 obtained by simply
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removing the first row from µ, and let σ′ ∈ Sn−µ1 be an element of cycle
type µ′. The value of the character χλ on (the conjugacy class of) σ is given
by

χλ(σ) = ∑
h
(−1)ht(h)χ(λ−h)(σ′)

where the sum ranges over all skew hooks h in λ of size µ1. (We adopt the
convention that the only partition of 0 is the empty partition 0, and that S0
is a group of order 1, with χ0 taking the value 1 on this unique element.)
Proof. Omitted. (See James [1].)

The proof of the Murnaghan-Nakayama rule follows nicely from a lot of
beautiful theory about the composition of the modules Mλ. Unfortunately,
the development of the machinery required to do this is long and beyond
the scope of this essay, and any proof of the Murnaghan-Nakayama rule
that does not explicitly rely on this theory is artificial and unenlightening,
so we omit the proof.

Example. To calculate the character of D⟨6,4,4,3,1⟩ evaluated at an element of
S18 of cycle type (5, 4, 3, 2, 2, 1, 1), we must first draw the Young diagram
of the partition, and attach the sign + to it. We then remove a skew hook
of size 5 in each way possible, and record the partitions of S13 that this
leaves us with; we switch the sign (from + to − or vice-versa) if the hook
has odd height, and we do not switch the sign if it has even height:
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We must then calculate the character of each of these remaining partitions
at an element of cycle type (4, 3, 2, 2, 1, 1) by further removing all skew 4-
hooks and appending the appropriate sign, etc. Eventually, the diagram
looks like this:
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Example. Earlier, we found an explicit basis for the Specht module, and de-
termined that S⟨4,2,1⟩ had dimension 35 over C (actually, we showed the
dimension was the same over any field F). Since we are working over C,
the bilinear form on polytabloids is an inner product, so Sλ = Dλ, and an
alternative method would have been to calculate the character of D⟨4,2,1⟩

on the conjugacy class containing the identity, i.e. on ⟨1, 1, 1, 1, 1, 1, 1⟩, us-
ing the Murnaghan-Nakayama rule. We verify that this gives the same
answer.

χ
××××
××
× on ⟨1, 1, 1, 1, 1, 1, 1⟩

= χ
×××
××
× + χ

××××
×
× + χ

××××
×× on ⟨1, 1, 1, 1, 1, 1⟩

= (χ
××
××
× + χ

×××
×
× + χ

×××
×× ) + (χ

×××
×
× + χ

××××
× ) + (χ

×××
×× + χ

××××
× ) on ⟨1, 1, 1, 1, 1⟩

= χ
××
××
× + 2χ

×××
×
× + 2χ

×××
×× + 2χ

××××
× (tidying up)

= (χ
××
×
× + χ

××
××) + 2(χ

××
×
× + χ

×××
× ) + 2(χ

××
×× + χ

×××
× )

+2(χ
×××
× + χ

××××
) on ⟨1, 1, 1, 1⟩

= 3χ
××
×
× + 3χ

××
×× + 6χ

×××
× + 2χ

××××
(tidying up)

= 3(χ
×
×
× + χ

××
× ) + 3(χ

××
× ) + 6(χ

××
× + χ

×××
) + 2(χ

×××
) on ⟨1, 1, 1⟩

= 3χ
×
×
× + 12χ

××
× + 8χ

×××
(tidying up)

= 3(χ
×
×) + 12(χ

×
× + χ

××
) + 8(χ

××
) on ⟨1, 1⟩

= 15χ
×
× + 20χ

××
(tidying up)

= 15(χ
×
) + 20(χ

×
) on ⟨1⟩

= 35χ
×

(tidying up)
= 35χ0(id) = 35.

5 Conclusion

Much more work has been done on the representation theory of the sym-
metric groups than it was possible to include in a short essay, but it is
worth pointing out that the field still contains many basic open problems.
For example, the composition factors of Mλ are all known when the field
has characteristic 0, and some results are known when the field has prime
characteristic, but the problem of characterising the composition factors
in general is still far from having been solved – this is perhaps one of the
biggest open problems in representation theory.

Nonetheless, the theory has already seen many applications within rep-
resentation theory, for example in finding the representations of Sym(N)
and GLn(F).
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