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Abstract

Fix a prime p > 2. Let G be a nilpotent-by-finite compact p-adic analytic

group, and k a finite field of characteristic p. We prove that kG is a

catenary ring.
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Introduction

In this thesis, we study the prime ideal structure of completed group rings kG of com-

pact p-adic analytic groups G over certain rings k. Most notably in the cases k = Zp

or k = Fp, kG is sometimes referred to as the Iwasawa algebra of G. Throughout

this thesis, k will be a field of characteristic p; many results will require stronger

hypotheses (e.g. that k be finite), and we will always state these explicitly.

Recall that a ring R is called catenary if, given any two prime ideals P � Q of R,

any two saturated chains of prime ideals beginning at P and ending at Q have the

same length. The main result of this thesis is:

Theorem A. [Corollary 10.3.3] LetG be a nilpotent-by-finite compact p-adic analytic

group, and k a finite field of characteristic p > 2. Then kG is a catenary ring.

In order to prove this, we will first need the concept of an orbitally sound compact

p-adic analytic group.

Let G be a compact p-adic analytic group, and H a closed subgroup. Following

Roseblade [24], we will say that H is orbital (or G-orbital) if it only has finitely

many G-conjugates, or equivalently if its normaliser NG(H) is open in G; and H

is isolated orbital (or G-isolated orbital) if H is orbital, and given any other closed

orbital subgroup H ′ of G with H � H ′, we have [H ′ : H] =∞. G is then said to be

orbitally sound if all its isolated orbital closed subgroups are in fact normal.
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The majority of the work goes into proving:

Theorem B. [Theorem 10.1.12] Let G be a nilpotent-by-finite, orbitally sound com-

pact p-adic analytic group, and k a finite field of characteristic p > 2. Then kG is a

catenary ring.

The main idea of the proof follows Roseblade [24]: we will show that, under certain

hypotheses, we may reduce the problem of understanding prime ideals of kG to one of

understanding prime ideals of kA for A a free abelian compact p-adic analytic group

– that is, A ∼= Zdp for some d, and kA a power series ring in d variables.

The link connecting Theorem B to Theorem A is as follows. We will say that a

prime ideal P of kG is faithful if the natural group homomorphism G→ (kG/P )× is

injective.

Theorem C. Let G be a nilpotent-by-finite compact p-adic analytic group. Then

(i) [Definition 2.1.5 and Theorem 2.1.6(ii)] G contains an open characteristic sub-

group nio(G) which is orbitally sound, and is the maximal such open normal

subgroup.

(ii) [Theorem 10.2.7] Suppose G is not orbitally sound, and P is a faithful prime

ideal of kG. Then P is induced from some proper open subgroup H of G

containing nio(G): that is, there is an ideal L of kH such that P is the largest

two-sided ideal contained in LkG.

This is a corollary of a “vertices and sources” result (Theorem 10.2.7), a partial ana-

logue of a theorem by Lorenz and Passman [17] for the case of group algebras of

polycyclic-by-finite groups. Theorem C depends mostly on some arguments around

prime and G-prime ideals, Krull(-Gabriel-Rentschler) dimension, etc. which are rea-

sonably independent of the rest of the material in this thesis; this is the majority of

§8.
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In order to be able to address Theorem B, we will first need to understand the

structure of nilpotent-by-finite compact p-adic analytic groups G.

We know already that there is an open characteristic subgroup nio(G) of G. We may

define also the two closed characteristic subgroups

∆ =
{
x ∈ G

∣∣ [G : CG(x)] <∞
}
,

∆+ =
{
x ∈ ∆

∣∣ o(x) <∞
}
,

and it will be clear that we have the inclusion

1 ≤ ∆+ ≤ ∆ ≤ nio(G) ≤ G.

We will show the existence of another series of important closed characteristic sub-

groups:

Theorem D.

(i) [§2.5] Let G be a nilpotent-by-finite compact p-adic analytic group. Then there

exists an open characteristic subgroup FNp(G) which is maximal among those

open normal subgroups H containing ∆+ with the property that H/∆+ is nilpo-

tent and p-valuable. (This is the finite-by-(nilpotent p-valuable) radical of G.)

Also, nio(G)/FNp(G) is isomorphic to a subgroup of t(Z×p ), the (cyclic) group

of torsion units of the ring Zp.

(ii) [§2.3] LetN be a p-valuable group. Then there exists a unique fastest descending

series of isolated orbital closed normal subgroups of N , the isolated lower central

series,

N = N1 �N2 � . . . ,

with the properties that each Ni is characteristic in N , Ni/Ni+1 is abelian for
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each i, [Ni, Nj] ≤ Ni+j for all i and j, and there exists some r with Nr = 1 if

and only if N is nilpotent.

There exists also a unique fastest descending series of isolated orbital closed

normal subgroups of N , the isolated derived series,

N = N (0) �N (1) � . . . ,

with the properties that each N (i) is characteristic in N , N (i)/N (i+1) is abelian

for each i, and there exists some r with N (r) = 1 if and only if N is soluble.

In the case when G is nilpotent-by-finite, we will take N = FNp(G)/∆+, and write

Hi for the preimage in G of Ni = Hi/∆
+. With this notation, we show:

Theorem E. [§2.5] Let G be a nilpotent-by-finite compact p-adic analytic group.

With notation as above, let a be a preimage in nio(G) of a generator of nio(G)/FNp(G).

Then conjugation by a acts on each Hi, and hence induces an action on the (free,

finite-rank) Zp-modules Hi/Hi+1 = Ai. In multiplicative notation, there is some

scalar ζ ∈ t(Z×p ) such that xa = xζ
i

for all x ∈ Ai.

Putting these ingredients together allows us to understand the structure of a nilpotent-

by-finite compact p-adic analytic group G, which, for convenience, we display in the

following diagram.
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G

nio(G)

.t(Z×p )

H1

a: ζ

� Zd1p ∼=A1

H

nilpotent, p-valuable

H2

...

Hr−1

a: ζr−1 � Z
dr−1
p

∼=Ar−1

Hr ∆+

1

Let H be a closed normal subgroup of G. We will say that an ideal I of kG is

controlled by H if (I ∩ kH)kG = I.

To prove the analogue of Theorem B in the case of polycyclic group algebras, Rose-

blade [24] first showed that faithful prime ideals P were controlled by ∆. Ardakov [4]

has proved an analogue of this result in the case of nilpotent p-valuable compact

p-adic analytic groups:

Theorem. [4, 8.4, 8.6] Let G be a nilpotent p-valuable group and k a field of char-

acteristic p. Then faithful primes P are controlled by the centre of G.

The idea behind Roseblade’s proof is as follows. As ∆ is finite-by-(torsion-free

abelian), its centre A is of finite index. If we are able to reduce from prime ide-

als of kG to certain (semi)prime ideals of k∆, and then (by a finite-index argument)

to certain (semi)prime ideals of kA, then we have reduced our problem to one of

commutative algebra.
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In §§3–4, we will explore the structure of the ring kG/M , where M is an arbitrary

minimal prime ideal of kG. It is known already, due to Ardakov, that the minimal

primes of kG are intimately connected with the minimal primes of k∆+: we review

this connection in Lemma 1.5.1. We strengthen the results in [5, Propositions 10.1,

10.4] and [3], which deal only with cases such as when G = F × U , for F a finite

group and U a uniform pro-p group, as below.

Our first result along these lines is as follows.

Theorem F. [Theorem 4.1.5(ii)] Let G be a compact p-adic analytic group with

G/∆+ pro-p, and let k be a finite field of characteristic p. Take a minimal prime p of

k∆+ which is G-invariant, so that pkG is a minimal prime of kG. Then there exist a

positive integer t, a finite field extension k′/k, and an isomorphism

ψ : kG/pkG→Mt

(
k′[[G/∆+]]

)
.

(The “G-invariant” condition is not too restrictive; we will return to this issue later.)

In fact, in proving this theorem, we give a more explicit construction of such an

isomorphism, so as to be able to keep track of images of ideals and subrings.

In the general case, if G is a compact p-adic analytic group, G will have an open

normal subgroup H satisfying the conditions of Theorem F; but this may not in

general extend to an isomorphism

kG/pkG→Mt

(
k′[[G/∆+]]

)
.

However, this is not too far off. We show that a similar result does hold, provided

we are willing to replace k′[[G/∆+]] by a closely related ring
(
k′[[G/∆+]]

)
α
, a central

2-cocycle twist of k′[[G/∆+]]. We define this fully in Definition 4.2.2, and then show
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that the twisting process (−)α preserves some desirable properties.

Theorem G. [Theorem 4.2.10] Let G be a compact p-adic analytic group and H an

open normal subgroup containing ∆+ with H/∆+ pro-p, and let k be a finite field

of characteristic p. Take a minimal prime p of k∆+ which is G-invariant (note that

then pkH is a minimal prime of kH and pkG is a minimal prime of kG). Then the

isomorphism

ψ : kH/pkH →Mt

(
k′[[H/∆+]]

)
of Theorem F (applied to the group H) extends to an isomorphism

ψ̃ : kG/pkG→Mt

((
k′[[G/∆+]]

)
α

)
.

Studying this isomorphism in detail allows us to understand the behaviour of ideals

of kG containing pkG by understanding ideals of
(
k′[[G/∆+]]

)
α
. We derive some

consequences of Theorem G that will be useful in later work.

In Definition 1.6.2 below, we will say that an ideal I of kG is faithful if the natural map

G→ (kG/I)× is an injection, and almost faithful if its kernel is finite. A measure of

the failure of I to be faithful is given by the normal subgroup I† := ker(G→ (kG/I)×).

Theorem H. [Corollaries 3.2.3 and 4.2.11] With notation as in Theorem G, let A

be an ideal of kH containing pkH. Write ψ(A/pkH) = Mt(a) for some ideal a of

k′[[H/∆+]]. Then

(i) A is prime in kH if and only if a is prime in k′[[H/∆+]].

(ii) A is stable under conjugation by G if and only if a is stable under conjugation

by G/∆+ in the ring
(
k′[[G/∆+]]

)
α
.

(iii) A is almost faithful as an ideal of kH if and only if a is (almost) faithful as an

ideal of k′[[H/∆+]].
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We state all of these results together here for convenience. Statement (i) above is an

easy consequence of Morita equivalence, given in Lemma 1.6.5, but statements (ii)

and (iii) rely crucially on explicit calculations under the isomorphism ψ.

We note here briefly that p will not necessarily be G-invariant, but may have a (finite)

G-orbit, say of size r. In this case, we can extend Theorem G to the following:

Theorem I. [Lemma 4.3.1] Let G be a compact p-adic analytic group and H an

open normal subgroup containing ∆+ with H/∆+ pro-p, and let k be a finite field of

characteristic p. Take a minimal prime p of k∆+ which is not necessarily G-invariant,

and let its stabiliser G1 have index r in G. Then there is an isomorphism

kG/Q→Mr(kG1/pkG1),

so that the isomorphism

kG1/pkG1 →Mt

((
k′[[G1/∆

+]]
)
α

)

of Theorem G (applied to the group G1) extends to an isomorphism

kG/Q→Mrt

((
k′[[G1/∆

+]]
)
α

)
.

We prove a much more precise statement of this theorem in §3.1, but do not state

it here as the notation is rather technical. The more precise statement helps in

understanding the relationship between ideals of kG and ideals of kH, when H is a

closed normal subgroup of G. When H acts transitively on the G-orbit of p, as in the

special case of Theorem G, it is not hard to generalise Theorem H; but the G-orbit

of p may split into several H-orbits, possibly of different sizes, and it is important to

keep track of the isomorphism.
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Using these various simplifications, we are almost able to extend the theorem of

Ardakov to a stronger analogue of Roseblade’s control theorem. We first prove the

following intermediate result:

Theorem J. [Proposition 7.3.3] Let G be a nilpotent-by-finite compact p-adic ana-

lytic group and k a field of characteristic p > 2. Let H = FNp(G), and let P be a

G-stable, almost faithful prime ideal of kH. Then PkG is prime.

The proof of this theorem is fairly technical. For the majority of the work, we

assume ∆+ = 1, so that H is nilpotent p-valuable; in §5 we construct an appro-

priate p-valuation on H, and in §7 we use this to form a filtration on a partial

quotient ring of kH/P which respects a particular crossed product decomposition

kG/PkG = kH/P ∗ F , and the proof of Theorem [J] follows from studying the

graded ring with respect to this filtration.

Finally, we get:

Theorem K. [Theorem 9.3.7] Let G be a nilpotent-by-finite, orbitally sound compact

p-adic analytic group, k a finite field of characteristic p > 2, and P an almost faithful

prime ideal of kG. Then P is controlled by ∆.

The deduction from Theorem K of Theorem B is adapted from methods outlined

in [24], and then Theorem A is deduced by mimicking results from [15], [16], [17], and

others.
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Chapter 1

Preliminaries

1.1 Compact p-adic analytic groups

Our primary object of study will be the completed group algebras of compact p-adic

analytic groups. These are perhaps most simply defined as closed subgroups G of the

(profinite) group GLn(Zp) for some n ≥ 0. It is known that{
uniform groups

[9, Definition 4.1]

}
⊆
{
p-valuable groups

[13, III, 2.1.2]

}
⊆

{
compact p-adic
analytic groups

[9, Definition 8.14]

}
,

with the first inclusion coming from [9, Definition 1.15; notes at end of chapter 4],

and the second from [9, Corollary 8.34]. We will say more about p-valuable groups

in §1.3.

Note also that compact p-adic analytic groups G are profinite groups satisfying Max:

every nonempty set of closed subgroups of G contains a maximal element. Indeed,

in the case when G is p-valuable, this follows from [13, III, 3.1.7.5]. In the gen-

eral case, G contains a uniform open normal subgroup U by [9, 8.34]; and, given a

nonempty set AG of closed subgroups of G, we can consider the related nonempty set

AU = {X ∩U |X ∈ AG} of closed subgroups of U . A maximal element Y of AU must
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come from an element X of AG with Y = X ∩ U , and [X : Y ] ≤ [G : U ] < ∞, so

if X is not maximal, choose an element Z ∈ AG strictly containing X; an induction

argument on the index [Z : Y ] shows that we will find a maximal closed subgroup in

finitely many steps.

Finally, we remark that [9, 8.34] implies that compact p-adic analytic groups are

precisely extensions of uniform (or p-valuable) groups by finite groups.

1.2 Orbital subgroups, ∆ and ∆+

Definition 1.2.1. Let G be a profinite group. A closed subgroup H of G is G-orbital

(or just orbital, when the group G is clear from context) if H has only finitely many

G-conjugates, i.e. if NG(H) is open in G. Similarly, an element x ∈ G is orbital if

[G : CG(x)] <∞.

Definition 1.2.2. The FC-centre ∆(G) of a profinite group G is the subgroup of all

orbital elements of G. The finite radical ∆+(G) of G is the subgroup of all torsion

orbital elements of G.

Remark. Throughout this thesis, we will write as shorthand ∆+ = ∆+(G) and

∆ = ∆(G). Also throughout, all homomorphisms will be continuous, etc. unless

otherwise specified; see e.g. [9, Corollary 1.20].

Lemma 1.2.3. Let G be a compact p-adic analytic group. For convenience, we record

a few basic properties of ∆ and ∆+.

(i) ∆+ is finite.

(ii) If H is an open subgroup of G, then ∆+(H) ≤ ∆+(G) and ∆(H) ≤ ∆(G).

(iii) When G is compact p-adic analytic, ∆+ and ∆ are closed in G.

11



(iv) ∆+ and ∆ are characteristic subgroups of G.

(v) ∆/∆+ is a torsion-free abelian group.

Proof.

(i) ∆+ is generated by the finite normal subgroups of G [22, 5.1(iii)]. It is obvious

that the compositum of two finite normal subgroups is again finite and normal.

Now suppose that ∆+ is infinite, and take an open uniform subgroup H of

G [9, 4.3]: then ∆+ ∩H is non-trivial, and so we must have some finite normal

subgroup F with F ∩ H non-trivial. But F is torsion, so this contradicts the

fact that H is torsion-free [9, 4.5].

(ii) If an element x ∈ H has finitely many H-conjugates, and H has finite index in

G, then x has finitely many G-conjugates.

(iii) ∆+ is closed because it is finite.

For the case of ∆, suppose first that G is p-valued [13, III, 2.1.2]. Now, any

orbital x ∈ G has CG(x) open in G, and so, for any g ∈ G, there exists some

n with gp
n ∈ CG(x), i.e. gp

n
x = xgp

n
. This implies that (gx)p

n
= gp

n
, and so

by [13, III, 2.1.4], we get gx = g. Hence CG(x) = G. In other words, ∆ = Z(G),

which is closed in G.

When G is not p-valued, it still has an open p-valued subgroup N [9, 4.3].

Clearly ∆(N) = ∆(G) ∩N , and so [∆(G) : ∆(N)] ≤ [G : N ] <∞. So ∆(G) is

a finite union of translates of Z(N), which is closed in N and hence closed in

G.

(iv) See [21, discussion after lemma 4.1.2 and lemma 4.1.6].

(v) See [21, lemma 4.1.6].
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Throughout the remainder of this subsection, G is a profinite group unless

stated otherwise.

Definition 1.2.4. An orbital closed subgroup H of G is isolated if, for all orbital

closed subgroups H ′ of G with H � H ′ ≤ G, we have [H ′ : H] = ∞. (We will

sometimes say that a closed subgroup is G-isolated orbital as shorthand for isolated

as an orbital closed subgroup of G.) Following Passman [22, definition 19.1], if all

isolated orbital closed subgroups of G are in fact normal, we shall say that G is

orbitally sound.

We record a few basic properties, before showing that this definition is the same as

the one given in [24, 1.3] and [4, 5.8] (in Lemma 1.2.10 below).

Lemma 1.2.5. Let N be a closed normal subgroup of G.

(i) Suppose H is a closed subgroup of G containing N . Then H/N is (G/N)-orbital

if and only if H is G-orbital; and H/N is (G/N)-isolated orbital if and only if

H is G-isolated orbital.

(ii) Suppose G is orbitally sound. Then G/N is orbitally sound.

(iii) Suppose N is finite and G/N is orbitally sound. Then G is orbitally sound.

Proof.

(i) It is easily checked that NG/N(H/N) = NG(H)/N , and so

[G : NG(H)] = [G/N : NG(H)/N ] = [G/N : NG/N(H/N)].

So H is orbital if and only if H/N is orbital. Suppose these two groups are both

orbital, and let H ′ be an orbital closed subgroup of G with H � H ′ ≤ G: then

[H ′ : H] = [H ′/N : H/N ], so H is isolated if and only if H/N is isolated.
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(ii) Let H/N be an isolated orbital closed subgroup of G/N . Then, by (i), H is an

isolated orbital subgroup of G, so H �G, and so H/N �G/N .

(iii) Let H be an isolated orbital closed subgroup of G. As N is normal in G, clearly

NG(HN) = NG(H), so that HN is G-orbital. But [HN : H] < ∞, and so we

must have HN = H as H is isolated orbital. So, by (i), H/N is (G/N)-isolated

orbital, and hence normal, as G/N is orbitally sound by assumption. But this

means that H is normal in G.

From now on, we assume that G is a profinite group satisfying the max-

imum condition on closed subgroups: every nonempty set of closed subgroups

of G has a maximal element.

Recall our earlier remark that, if G is compact p-adic analytic, it satisfies the maxi-

mum condition on closed subgroups.

Definition 1.2.6. If H is an orbital closed subgroup of G, we define its isolator

iG(H) in G to be the closed subgroup of G generated by all orbital closed subgroups

L of G containing H as an open subgroup, i.e. with [L : H] <∞.

Once we have proved that iG(H) is indeed an isolated orbital closed subgroup of G

containing H as an open subgroup, it will be clear from the definition that it is the

unique such closed subgroup.

We now prove some basic properties of iG(H), following [22].

Proposition 1.2.7. Suppose H is an orbital closed subgroup of G. Then H is open

in iG(H).

Proof. We first show that, if L1 and L2 are orbital subgroups of G containing H as

an open subgroup, then
[
〈L1, L2〉 : H

]
< ∞. Write (−)◦ for

⋂
g∈G(−)g. Suppose

without loss of generality that G = 〈L1, L2〉, and that H◦ = 1 (by passing to G/H◦).

14



For i = 1, 2, as [Li : H] <∞ and as H,Li are all orbital, we may take an open normal

subgroup N of G such that [N,Li] ⊆ H. Indeed, NG(Li) is a subgroup of finite index

in G, and permutes the (finitely many) left cosets of H in Li by left multiplication;

take Ni to be the kernel of this action, and set N = N1 ∩N2.

Hence [N ∩H,Li] ⊆ N ∩H, i.e. both L1 and L2 normalise N ∩H, so G normalises

N ∩ H. So N ∩ H is a normal subgroup of G contained in H, and by assumption

must be trivial. But N was an open subgroup of G, so H must have been finite, and

so L1 and L2 must be finite orbital subgroups of G. This implies that Li ≤ ∆+, and

hence G = ∆+, so that G is finite, as required.

Now, in the general case, G satisfies the maximal condition on closed subgroups, so

we can choose L maximal subject to L being orbital and [L : H] < ∞. This L is

iG(H) and contains H as an open subgroup.

Lemma 1.2.8.

(i) Suppose H is an orbital closed subgroup of G. Then iG(H) is an isolated orbital

closed subgroup of G. Furthermore, if H is normal in G, then so is iG(H).

(ii) Suppose G is orbitally sound and H is a closed subgroup of finite index. Then

H is orbitally sound.

Proof.

(i) If iG(H) is orbital, then by Proposition 1.2.7, it is isolated (by construction).

But H has finite index in iG(H), so iG(H) must be generated by a finite number

of closed orbital subgroups L1, . . . , Ln containing H as a subgroup of finite

index. So
n⋂
i=1

NG(Li) ≤ NG(iG(H)),

and as each NG(Li) is open in G, so is NG(iG(H)).
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Now suppose that H is normal in G. To see that iG(H) is normal in G, fix

g ∈ G, and note that conjugation by g fixes H and therefore simply permutes

the set of orbital closed subgroups L of G containing H as an open subgroup,

i.e. permutes the set of subgroups of G that generate iG(H) (see Definition

1.2.6).

(ii) Let K be an isolated H-orbital closed subgroup of H. Then K is G-orbital,

so iG(K) is an isolated orbital subgroup of G, and so is normal in G. Hence

iG(K)∩H is normal in H. But [iG(K) : K] <∞, so [iG(K)∩H : K] <∞, and

hence iG(K) ∩H = K, as K was assumed to be isolated in H.

Lemma 1.2.9. Let H be an open normal subgroup of G. Then there is a one-to-one

correspondence{
isolated orbital

closed subgroups of G

}
oo //

{
isolated orbital

closed subgroups of H

}
G′ � // G′ ∩H,

iG(H ′) oo � H ′.

Proof. Suppose first that H ′ is an arbitrary orbital closed subgroup of H. That is,

NH(H ′) is open in H, hence also in G, and so NG(H ′) must be open in G. Therefore

H ′ is also G-orbital, and so, by Lemma 1.2.8(i), iG(H ′) is an isolated orbital closed

subgroup of G.

Next, take a G-isolated orbital closed subgroup G′ of G. As G′ and H are both

G-orbital, so is G′ ∩ H, and so we may take its G-isolator; we will show that

iG(G′ ∩ H) = G′. But both G′ and iG(G′ ∩ H) are G-isolated orbital (G′ by as-

sumption, iG(G′ ∩H) by definition) and contain G′ ∩H as an open subgroup, so by

uniqueness (see Definition 1.2.6), they are equal.

Furthermore, as G′ ∩ H is G-orbital, it is also H-orbital. Take some closed orbital

subgroup L of H containing G′ ∩ H as an open subgroup; then, by the previous

paragraph, L is contained in iH(G′ ∩H) ≤ iG(G′ ∩H) = G′; and L is contained in H
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by assertion, so must in fact be contained in G′ ∩H. Hence we conclude that G′ ∩H

is its own H-isolator, and is hence already isolated orbital in H.

Finally, take an isolated orbital closed subgroup H ′ of H; it remains to show that

iG(H ′) ∩H = H ′. To do this, note that iG(H ′) contains H ′ as an open subgroup by

Proposition 1.2.7, so iG(H ′) ∩H is an H-orbital closed subgroup (by the correspon-

dence above) containing the H-isolated orbital H ′ as an open subgroup, and so by

definition the two must be equal.

Lemma 1.2.10. The following are equivalent:

(i) G is orbitally sound, i.e. any isolated orbital closed subgroup H of G is normal.

(ii) Any orbital closed subgroup K of G contains a subgroup N of finite index in

K which is normal in G.

Proof.

(i)⇒ (ii) Let K be an orbital closed subgroup of G. By Lemma 1.2.8(i), iG(K)

is an isolated orbital closed subgroup of G, and so (by assumption) is normal in G.

Therefore, as it contains K as a subgroup of finite index (by Proposition 1.2.7), it

must contain each conjugate Kg (for any g ∈ G) as a subgroup of finite index. But

as K is G-orbital, it only has finitely many G-conjugates, and so their intersection

K◦ still has finite index in iG(K) and hence also in K, and K◦ is normal in G by

construction.

(ii)⇒ (i) Let H be an isolated orbital closed subgroup of G, and write H◦ for the

largest normal subgroup of G contained in H, which by (ii) must have finite index

in H. Now clearly H ≤ iG(H◦) by definition of iG(H◦), but also iG(H◦) ≤ H as H

is isolated and contains H◦. So H is the G-isolator of a normal subgroup, and so by

Lemma 1.2.8(i), H is also normal in G.
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1.3 p-valuations

Recall [13, III, 2.1.2] that a p-valuation of a group G is a function

ω : G→ R ∪ {∞}

satisfying the following properties:

• ω(x) =∞ if and only if x = 1,

• ω(x) > (p− 1)−1,

• ω(x−1y) ≥ inf{ω(x), ω(y)},

• ω([x, y]) ≥ ω(x) + ω(y),

• ω(xp) = ω(x) + 1,

for all x, y ∈ G. The group G, when endowed with the p-valuation ω, is called p-

valued. On the other hand, a group G is called p-valuable [13, III, 3.1.6] if there exists

a p-valuation ω of G with respect to which G is complete of finite rank. We will

usually carefully distinguish between the two, as we will be considering more than

one p-valuation on p-valuable groups in §5.

Definition 1.3.1. Recall from [4, 4.2] that an ordered basis for a p-valuable group

G (with p-valuation ω) is a set {g1, . . . , ge} of elements of G such that every element

x ∈ G can be uniquely written as the (ordered) product

x =
∏

1≤i≤e

gλii

for some λi ∈ Zp, and

ω(x) = inf
1≤i≤e

{ω(gi) + vp(λi)},
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where vp is the usual p-adic valuation on Zp.

As in [4], we will often write

gλ :=
∏

1≤i≤e

gλii

as shorthand, where λ = (λ1, . . . , λe) ∈ Zep.

We recall a property of ordered bases.

Lemma 1.3.2. Let G be a complete p-valued group of finite rank, and N a closed

isolated normal subgroup of G. Then there exist sets BN ⊆ BG such that BN is an

ordered basis for N and BG is an ordered basis for G.

Proof. This follows from [4, proof of Lemma 8.5(a)].

Remark. It may be helpful to think of this as follows:

BG =
{
x1, . . . , xr︸ ︷︷ ︸

BG/N

, xr+1, . . . , xs︸ ︷︷ ︸
BN

}
,

where BG/N = BG \BN can in fact be taken to be any preimage in G of any ordered

basis for G/N .

Let G be a p-valuable group with p-valuation ω. Then we may form an associated

graded group grωG as follows. Write

Gω,λ := Gλ := ω−1([λ,∞]),

Gω,λ+ := Gλ+ := ω−1((λ,∞])

and define

grωG :=
⊕
λ∈R

Gλ/Gλ+ .
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Each element 1 6= x ∈ G has a principal symbol

grω(x) := xGµ+ ∈ Gµ/Gµ+ ≤ grωG,

where µ is defined such that µ = ω(x).

1.4 Completed group rings

Definition 1.4.1. [8, Introduction] Let G be a profinite group and k a commutative

pseudocompact ring (e.g. a commutative profinite ring). Then the completed group

ring kG is defined to be

kG = lim←−
N

k[G/N ],

where the inverse limit ranges over all open normal subgroups N of G, and k[G/N ]

denotes the usual group ring of the (finite) group G/N over k.

Remark. When it helps to reduce ambiguity, we will write kG as k[[G]].

Recall from [18, 1.5.2] that, for any finite group F , there is a natural embedding of

groups iF : F → (k[F ])×. By taking the inverse limit of the maps {iG/N}, we get a

continuous embedding i : G→ (kG)×.

Lemma 1.4.2 (Universal property of completed group rings). Let G be a profinite

group and k a commutative pseudocompact ring. Then the completed group ring kG

satisfies the following universal property: given any pseudocompact k-algebra R and

any continuous group homomorphism f : G→ R×, there is a unique homomorphism

f ∗ : kG → R of pseudocompact k-algebras satisfying f ∗ ◦ i = f . (Here, (kG)× and

R× are naturally viewed as subsets of kG and R respectively.)

Proof. Let f : G→ R× be a continuous group homomorphism, and let I be an open

20



ideal of R which is a neighbourhood of zero. Then (I + 1)∩R× must be open in R×,

and so its preimage I† := f−1((I+1)∩R) must be open inG. Thus the map f descends

to a homomorphism of (abstract) groups fI : G/I† → R×/(I + 1) ∩ R× → (R/I)×,

and G/I† is finite.

Now, by the universal property for (usual) group rings [18, 1.5.2], we get a unique

ring homomorphism k[G/I†] → R/I extending fI , and hence a ring homomorphism

kG → k[G/I†] → R/I by definition. But as R is the inverse limit of these R/I,

and the maps fI are all clearly compatible by uniqueness, we get a continuous ring

homomorphism kG→ R extending f .

1.5 Minimal prime ideals

Let G be a compact p-adic analytic group and k a finite field of characteristic p

throughout.

Lemma 1.5.1.

(i) Write J := J(k∆+). Then JkG is a two-sided ideal of kG contained in the

prime radical of kG. Hence, denoting by (·) images under the natural map

kG→ kG/JkG, there is a one-to-one correspondence{
minimal prime

ideals of kG

}
oo //

{
minimal prime

ideals of kG

}
.

(ii) Retain the notation of (i).

Let X = {e1, . . . , er} be a G-orbit of centrally primitive idempotents of k∆+,

and write f = e1 + · · · + er. Then MX := (1 − f)kG is a minimal prime ideal

of kG, hence (by (i)) its preimage MX in kG is a minimal prime ideal in kG.

Conversely, let M be a minimal prime ideal of kG. Then there exists a G-orbit

X of centrally primitive idempotents of k∆+ such that M = MX .
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This sets up a one-to-one correspondence{
minimal prime

ideals of kG

}
oo //

{
G-orbits of centrally

primitive idempotents of k∆+

}
.

(iii) Given a centrally primitive idempotent e ∈ k∆+, there exists some t > 0 and

some finite field extension k′/k with e·k∆+ ∼= Mt(k
′). Hence, if A is a k-algebra,

we may identify the rings

e · k∆+ ⊗
k
A oo

= // e · k∆+ ⊗
k′

(k′ ⊗
k
A) oo = //Mt(k

′ ⊗
k
A).

Proof.

(i) This follows from [3, 5.2].

(ii) This follows from [3, §5, in particular 5.7].

(iii) e·k∆+ is a simple finite-dimensional k-algebra, so the isomorphism e·k∆+ ∼= Mt(k
′)

follows from Wedderburn’s theorem. The rest is a simple calculation.

We will use this correspondence very often, so will immediately set up notation which

we will use for the rest of this thesis.

Notation 1.5.2. If an ideal I � kG contains a minimal prime ideal, then it contains

a unique minimal prime ideal, say M . Then, under the correspondence of Lemma

1.5.1(ii), we obtain a unique G-orbit X of centrally primitive idempotents of k∆+

corresponding to M .

Throughout this thesis, we will write

cpik∆+
(I) (or cpik∆+

(M))

for this set X. Given a centrally primitive idempotent e ∈ cpik∆+
(I), we will write

f = e|G to mean

f =
∑

g∈CG(e)\G

eg,
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where CG(e)\G denotes the (finite) set of right cosets of CG(e) in G. In other words,

if we write e = e1 and X = {e1, . . . , er}, then f = e|G means f = e1 + · · ·+ er.

Throughout this thesis, when invoking Lemma 1.5.1, (·) will always mean the quotient

by JkG unless otherwise stated. Thus,

• M = (1− f)kG,

• f · kG = kG/M ∼= kG/M ,

• f · I = I/M ∼= I/M , etc.

1.6 Faithfulness and control

Let G be a compact p-adic analytic group, and k a field of characteristic p.

Definition 1.6.1. Let P be a prime ideal of the ring R. We say that P is controlled

by the subring S if (P ∩ S)R = P . Following Roseblade [24, 1.1], if R = kG and

S = kH for some closed normal subgroup H of G, we say P is controlled by H.

Definition 1.6.2. For any ideal I of kG, define also

I† = {x ∈ G
∣∣x− 1 ∈ I}.

This is the kernel of the natural group homomorphism G → (kG/I)×, and so is a

normal subgroup of G. If I† = 1, we say that I is a faithful ideal; if I† is finite, we

say that I is almost faithful.

The next two lemmas are technical results about controller subgroups: see the remarks

at the start of section 3.2 for the big picture.

Lemma 1.6.3. Suppose now that k is finite. Let P be an ideal of kG containing a
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prime ideal, and write

e = cpik∆+
(P ), f = e|G

as in Notation 1.5.2. Let H be any closed subgroup of G containing ∆+. Then the

following are equivalent:

• (P ∩ kH)kG = P ,

• (P ∩ kH)kG = P ,

• (f · P ∩ f · kH)f · kG = f · P .

Proof. Firstly, JkG ⊆ P by Lemma 1.5.1(i), and so by the modular law we have

(P ∩ kH) + JkG = P ∩ (kH + JkG)

from which we can deduce

P ∩ kH = P ∩ kH,

and so

(P ∩ kH)kG = (P ∩ kH)kG.

Conversely, the preimage in kG of (P ∩ kH)kG is (P ∩kH)kG+JkG, but this is just

(P ∩ kH)kG as J ⊆ P ∩ kH.

Secondly, (1− f)kG ⊆ P , and so just as above we may deduce by the modular law

f · ((P ∩ kH)kG) = (f · P ∩ f · kH)f · kG.

Similarly, 1 − f ∈ P ∩ kH, so the preimage in kG of (f · P ∩ f · kH)f · kG is

(P ∩ kH)kG.

In order to retrieve information from Lemma 1.5.1(iii), we need a matrix control
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lemma:

Lemma 1.6.4. Let R be a ring, I an ideal of R, and S a subring of R. Let t be a

positive integer. Then the following are equivalent:

(i) (I ∩ S)R = I

(ii) (Mt(I) ∩Mt(S))Mt(R) = Mt(I)

Proof.

(i)⇒ (ii) Identify R, S and I with their images under the diagonal embedding

R ↪→Mt(R). It is clear that

I ·Mt(R) ⊆Mt(I),

and conversely if akl ∈ I for all 1 ≤ k, l ≤ t then

(aij)i,j =
∑
k,l

aklEkl

where Ekl ∈ Mt(R) is the elementary matrix with (i, j)-entry δikδjl. So we see that

I ·Mt(R) = Mt(I). But clearly

Mt(I) = I ·Mt(R) = (I ∩ S)R ·Mt(R)

= (I ∩ S)Mt(R)

⊆ (Mt(I) ∩Mt(S))Mt(R)

⊆Mt(I),

and so these are all equal.

(ii)⇒ (i) Write d : R→Mt(R) for the natural diagonal map r 7→ rI, where I is the

identity element of Mt(R). We will show that (Mt(I)∩Mt(S))Mt(R) = Mt((I∩S)R).
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Then, by intersecting both sides of the equalityMt((I∩S)R) = Mt(I) with the subring

d(R), which we may identify with R, we see that it implies (I ∩ S)R = I.

First, it is clear by definition that Mt(I) ∩Mt(S) = Mt(I ∩ S).

Next, in order to show that Mt((I ∩ S)R) = Mt(I ∩ S)d(R), we note simply that, for

any r ∈ R and elementary matrix Eij as above, we have rEij = Eijd(r). So, given

some x ∈Mt((I ∩ S)R), we may write

x =
t∑

i,j=1

xijEij,

with each xij ∈ (I ∩ S)R, so that

xij =

nij∑
k=1

yijkrijk,

with each yijk ∈ I∩S, each r ∈ R and each nij some positive integer. Now, reordering

the factors of each product as above, we see that

x =
∑
i,j,k

(yijkEij)d(rijk)

is clearly an element of Mt(I ∩ S)d(R); the converse is similar.

Finally, the inclusion Mt(I ∩ S)d(R) ⊆ Mt(I ∩ S)Mt(R) is trivial; and the reverse

inclusion is proved using a similar trick to the above, i.e. any element x ∈Mt(R) can

be written as

x =
t∑

i,j=1

yijEij =
t∑

i,j=1

Eijd(yij)

for some yij ∈ R, and Mt(I ∩ S)Eij ⊆Mt(I ∩ S). This establishes the equality.

Finally, we recall some basic properties of Morita equivalence:
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Lemma 1.6.5. If R and S are Morita equivalent rings, then there is an order-

preserving one-to-one correspondence between the ideals of R and the ideals of S,

and this correspondence preserves primality. R is Morita equivalent to Mt(R) for any

positive integer t.

Proof. This is [18, 3.5.5, 3.5.9].

1.7 Crossed products

Definition 1.7.1. Let A and G be groups. Suppose we have a function of sets

σ : G→ Aut(A)

– that is, G “acts on” A, but this action does not necessarily respect the group

structure of G. (We will write the image of a ∈ A under the automorphism σ(g) as

aσ(g).) Let α : G×G→ A be a function of sets.

If, for all x, y, z ∈ G, we have

α(xy, z)α(x, y)σ(z) = α(x, yz)α(y, z), (1.7.1)

then α is a 2-cocycle (for the action of G on A, or with respect to σ). We will write

the set of such functions α as

Z2
σ(G,A).

Let G be a finite group, R a ring, and S = R∗G a fixed crossed product. Recall [22, §1]

that this means that:

• S is a free R-module on a generating set G ⊆ S, where |G| = |G|, and we shall

write its elements as g for g ∈ G;
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• multiplication in S is given by

rg = grσ(g) for all r ∈ R, g ∈ G,

gh = ghτ(g, h) for all g, h ∈ G,

where

σ : G→ Aut(R), the action,

τ : G×G→ R×, the twisting ,

are two functions of sets satisfying

σ(x)σ(y) = σ(xy)η(x, y) (1.7.2)

τ(xy, z)τ(x, y)σ(z) = τ(x, yz)τ(y, z), (1.7.3)

where η(x, y) is the automorphism of R given by conjugation (on the right) by

τ(x, y).

Equation (1.7.3) says that τ is a 2-cocycle for σ with values in R×, i.e. τ ∈ Z2
σ(G,R×).

Notation 1.7.2. We will often need to write this structure explicitly as

S = R ∗
〈σ,τ〉

G.
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Chapter 2

The structure of

nilpotent-by-finite, orbitally sound

G

2.1 Orbital soundness and the Roseblade subgroup

nio(G)

We begin this section by remarking that “orbitally sound” is not too restrictive a

condition. Recall:

Lemma 2.1.1. Let G be a p-valuable group. Then G is orbitally sound.

Proof. This is [4, Proposition 5.9], after remarking that the definitions of “orbitally

sound” given in Definition 1.2.4 and in [4, 5.8] are equivalent by Lemma 1.2.10.

The following two lemmas will allow us to find a large class of orbitally sound groups.

For the next lemma, fix the following notation. Let G be a compact p-adic ana-
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lytic group, and consider its Qp-Iwasawa algebra QpG := (ZpG)
[

1
p

]
. Write I for its

augmentation ideal

I = ker(QpG→ Qp).

Now, Ik is generated over QpG by {(x1− 1) . . . (xk− 1)
∣∣xi ∈ G}. Now it is clear that

G acts unipotently on the series

QpG ≥ I ≥ I2 ≥ I3 ≥ . . . ,

i.e. for all g ∈ G, we have (g − 1)QpG ⊆ I and (g − 1)Ik ⊆ Ik+1.

Write also Un for the subgroup of GLn(Qp) consisting of upper triangular unipotent

matrices.

Lemma 2.1.2. Let G be a compact p-adic analytic group. Write

Dk = ker(G→ (QpG/I
k)×),

the k-th rational dimension subgroup of G, for all k ≥ 1. Then the Dk are a descend-

ing chain of isolated orbital closed normal subgroups of G. This chain eventually

stabilises: that is, there exists some t such that Dn = Dt for all n ≥ t.

Furthermore, if G is torsion-free and nilpotent, then Dt = 1, and G is isomorphic to

a closed subgroup of Um for some m.

Proof. By definition, it is clear that the Dk are closed normal (hence orbital) sub-

groups of G; to show that they are isolated orbital, we will show that each G/Dk is

torsion-free.

Fix k. Consider the series of finite-dimensional Qp-vector spaces

QpG/I
k > I/Ik > I2/Ik > I3/Ik > · · · > Ik/Ik,
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and choose a basis forQpG/I
k which is filtered relative to this series: i.e. by repeatedly

extending a basis for Ir/Ik to a basis for Ir−1/Ik for r = k, k−1, . . . , 1, we get a basis

B = {e1, . . . , el}

and integers

0 = nk < nk−1 < nk−2 < · · · < n1 < n0 = l

with the property that {e1, . . . , enr} is a basis for Ir/Ik for each 0 ≤ r ≤ k (where we

write I0 = QpG for convenience).

As G acts unipotently (by left multiplication) on QpG/I
k, and by definition of the

basis B, we see that with respect to B, each g ∈ G acts by a unipotent upper-

triangular matrix, i.e. we get a continuous group homomorphism G → Ul. Now Dk

is just the kernel of this map; but Ul is torsion-free, so Dk must be isolated.

Recall the dimension dimH of a pro-p group H of finite rank from [9, 4.7]. As

G has finite rank, it also has finite dimension [9, 3.11, 3.12], and we must have

dimDi ≥ dimDi+1 for all i by [9, 4.8]. But if dimDi = dimDi+1, then Di/Di+1 is a

p-valued group (as Di+1 is isolated) of dimension 0 (again by [9, 4.8]), and so must

be trivial. Hence the sequence (Di) stabilises after at most t := 1 + dimG terms, and

so

Dt =
⋂
n≥1

Dn.

Now suppose that G is nilpotent. Then, by [3, Theorem A], it follows that I is

localisable. Let R = (QpG)I be its localisation, and J(R) = m its unique maximal

ideal: then the ideal

A =
⋂
n≥1

mn

satisfies A = mA, so by Nakayama’s lemma [18, 0.3.10], we must have A = 0. This
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implies that ⋂
n≥1

In ⊆ ker(QpG→ R).

Assuming further that G is torsion-free, we see that QpG is a domain [20, Theorem

1], and so the localisation map QpG→ R is injective. Hence
⋂
n≥1 I

n = 0, and so

Dt =
⋂
n≥1

Dn =

(⋂
n≥1

(In + 1) ∩G

)
⊆

(⋂
n≥1

In

)
+ 1 = 1.

Now the representation G → Aut(QpG/I
t) ∼= GLm(Qp) is faithful and has image in

Um.

Lemma 2.1.3. Let G be a (topologically) finitely generated nilpotent pro-p group.

Then G is p-valuable if and only if it is torsion-free.

Proof. If G is torsion-free, then Lemma 2.1.2 gives an injective map G → Um.

Now, as G is topologically finitely generated, its image in Um must lie inside the

set 1
pt
Mm(Zp) ∩ Um for some t. Hence, by conjugating by the diagonal element

diag(p, p2, . . . , pm)t+ε ∈ GLm(Qp),

where

ε =


1 p > 2,

2 p = 2,

we see that G is isomorphic to a subgroup of

Γε =
{
γ ∈ GLm(Zp)

∣∣ γ ≡ 1(mod pε)
}
,

the εth congruence subgroup of GLm(Zp), which is uniform (and hence p-valuable)

by [9, Theorem 5.2].
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The reverse implication is clear from the definition of a p-valuation [13, III, 2.1.2].

Now we have found a large class of orbitally sound compact p-adic analytic groups.

Corollary 2.1.4. If G is a finite-by-nilpotent compact p-adic analytic group, then it

is orbitally sound.

Proof. G := G/∆+ must be a nilpotent compact p-adic analytic group with ∆+(G) = 1,

and so G is torsion-free by [23, 5.2.7]. Now Lemma 2.1.3 shows that G is p-valuable,

and from Lemma 2.1.1 we may deduce that G is orbitally sound. But now Lemma

1.2.5(iii) implies that G is orbitally sound.

Remark. It is well known that finite-by-nilpotent implies nilpotent-by-finite, but not

conversely. Not all nilpotent-by-finite compact p-adic analytic groups are orbitally

sound: indeed, the wreath product

G = Zp o C2 = (Zp × Zp)o C2

is abelian-by-finite, and the infinite procyclic subgroup H = Zp × {0} is orbital, but

the largest G-normal subgroup contained in H is the trivial subgroup.

We can now define the Roseblade subgroup.

Definition 2.1.5. As in Roseblade [24, 1.3], write nio(G) for the closed subgroup of

G defined by

nio(G) =
⋂
H

NG(H),

where the intersection ranges over the isolated orbital closed subgroups H of G.

Theorem 2.1.6. Let G be a compact p-adic analytic group.

(i) An orbitally sound open normal subgroup N�G normalises every closed isolated

orbital subgroup H ≤ G.
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(ii) nio(G) is an orbitally sound open characteristic subgroup of G.

Proof.

(i) Since H is isolated orbital in G, we must have that H ∩ N is isolated or-

bital (and hence normal) in N . However, it follows from Lemma 1.2.9 that

H = iG(H ∩ N). Hence H is generated by all the (finitely many) closed or-

bital subgroups L1, . . . , Lk of G containing H ∩N as a subgroup of finite index.

Conjugation by n ∈ N permutes these Li, and so fixes H.

(ii) Let N be a complete p-valued open normal subgroup of G (e.g. by [9, 8.34]).

Then Lemma 2.1.1 shows that N is orbitally sound, and hence by (i) N nor-

malises all closed isolated orbital subgroups of G. So, by definition, N ≤ nio(G),

and so [G : nio(G)] ≤ [G : N ] <∞. Therefore nio(G) is open in G as required.

But by definition, nio(G) is the largest subgroup that normalises all isolated

orbital subgroups of G, so by the correspondence of Lemma 1.2.9 and Lemma

1.2.8(i), it normalises all isolated orbital subgroups of nio(G), i.e. it is orbitally

sound.

Proof of Theorem C(i). This follows from Definition 2.1.5 and Theorem 2.1.6(i),

(ii).

2.2 Two worked examples

Example 2.2.1. Let p 6= 2, and fix some λ ∈ Zp. Set

H = Hλ =

〈
a, b, c, d; [a, b] = 1, [a, c] = y, [a, d] = z,

y, z central [b, c] = z, [b, d] = yλ, [c, d] = 1

〉
,
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a compact p-adic analytic group which is nilpotent of nilpotency class 2. Write

Z = Z(H) = 〈y, z〉

for its centre. Then set

G = H o 〈α|α2〉,

where α acts on H by

aα = a−1z, bα = b−1, cα = c−1, dα = d−1,

yα = y, zα = z.

Let h = aibjckdlymzn be an element of H (with i, j, k, l,m, n ∈ Zp), and consider the

map Ch : H/Z → Z given by x 7→ [h, x]. As H/Z and Z are both abelian, we may

consider them as free Zp-modules (H/Z)+ and Z+ (the subscript ”+” shows that we

are now writing them additively), with bases given by the generators as above:

(H/Z)+ = Zpa⊕ Zpb⊕ Zpc⊕ Zpd, Z+ = Zpy ⊕ Zpz.

Now, Ch is a Zp-linear map:

• given u,v ∈ (H/Z)+, we have Ch(u + v) = Ch(u) + Ch(v), by [9, 0.1].

• Given u ∈ (H/Z)+ and a positive integer µ, we have Ch(µu) = µCh(u), by [9,

0.2]; hence this equality holds for all µ ∈ Zp by continuity,

and so, with respect to the bases for (H/Z)+ and Z+ given above, we can write the

matrix corresponding to Ch as

Mh =

−k −λl i λj

−l −k j i

 .
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When this matrix has rank 2, we know that it is surjective considered as a linear map

(H/Z)+ ⊗
Zp
Qp → Z+ ⊗

Zp
Qp.

In other words, if N is a normal subgroup of H containing h, then it must contain all

of Ch(H/Z) = [h,H], and hence contains an open subgroup of Z. However, if there

exists some h such that Mh has rank ≤ 1, then [h,H] generates a subgroup of Z with

(Zp-)rank less than that of Z, so in particular it is a subgroup of infinite index.

So we will write down the six 2× 2 minors of Mh, and use this observation to answer

the question of whether G is orbitally sound:



m1 = k2 − λl2

m2 = i2 − λj2

m3 = il − jk

m4 = λjk − λil

m5 = ik − λjl

m6 = λjl − ik.

Now we split this question into two cases.

Case (a): λ is not a square in Zp. Recall that i, j, k, l ∈ Zp; hence, in this case, we

see immediately that, whenever m1 = m2 = 0, we have i = j = k = l = 0: that is,

for any non-central h ∈ H, we deduce that [h,H] generates an open subgroup of Z.

We claim that, in this case, G is orbitally sound.

Let N be any orbital subgroup of G. In order to show that G is orbitally sound,

we will show that N contains an open subgroup N ′ which is normal in G, and then

invoke Lemma 1.2.10. First, note that N ∩H is an open subgroup of N (as H is an
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open subgroup of G), and that the normal core K in H of N ∩H is an open subgroup

of N ∩H (as N ∩H is orbital, and H is orbitally sound by Corollary 2.1.4) which is

normal in H by construction. Now coreG(K) = K ∩Kα is a normal subgroup of G,

and we claim that it is open in K, and hence open in N .

Clearly, if K ≤ Z, then kα = k for all k ∈ K (as α has been defined to act trivially

on the generators of Z), and so K ∩Kα = K, so we are done in this case. Otherwise,

K contains some element h ∈ H \ Z, and so contains all of [h,K] (as K is normal in

H). By the calculations above, Mh has maximal rank, and therefore [h,K] generates

an open subgroup of Z, so that [KZ : K] <∞.

This allows us to assume, without loss of generality, that K contains all of Z. But

then

[K : K ∩Kα] = [K/Z : (K/Z) ∩ (K/Z)α],

and as (hZ)α = (hZ)−1 for all h ∈ H, we see that (K/Z)α = K/Z. This concludes

the proof that G is orbitally sound.

Case (b): λ = µ2 for some µ ∈ Zp. Then taking i = µ, j = 1, k = l = 0 satisfies

m1 = · · · = m6 = 0: that is, when h = aµb, we deduce that Ch(H) is not an open

subgroup of Z ∼= Zp ⊕ Zp (indeed, we can calculate it easily to be 〈yµz〉 ∼= Zp).

We claim that, in this case, G is not orbitally sound.

Let N = 〈h〉
H

, the normal closure in H of the procyclic subgroup generated by h.

(This must be orbital in G, as it is orbital in a finite-index subgroup of G.) By the

above calculation, we must have

N = 〈h, yµz〉,
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and hence

Nα = 〈hα, (yµz)α〉

= 〈h−1zµ, yµz〉.

Therefore

N ·Nα = 〈h, yµz, hα, (yµz)α〉

= 〈h, yµz, zµ〉,

a free abelian pro-p group of rank 3. So we see that N∩Nα has rank 1 as a Zp-mobule,

and therefore must have infinite index in N .

Example 2.2.2. A modification of the previous example: if the action of the semidirect

product is chosen well, orbital soundness can be made independent of the parameter

λ.

Fix an element λ ∈ Zp, and let H = Hλ and G = H o 〈α|α2〉 as in 2.2.1, with all the

same notation, but now define the action of α as follows:

aα = a−1, bα = b−1, cα = c−1, dα = d−1,

yα = y, zα = z.

When λ is not a square in Zp, G is orbitally sound as above. So suppose λ is a square

in Zp. Then writing λ = µ2 for one of its square roots, we have as before

m1 = · · · = m6 = 0⇔ i = µj, k = µl

⇔ h = aµjbjcµldl modulo central elements,
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and it is again easy to see that, for this choice of h,

[h,H] = 〈yµlzl, yµjzj〉

= 〈(yµz)pr〉

for some r with pr = hcf(j, l). Then take N = 〈h〉
H

= 〈h, (yµz)pr〉. In this case, a

calculation shows that

hα = h−1(yµz)2µjl,

and clearly we have pr|2µjl, so that Nα = N .

It is now clear that G is orbitally sound. Indeed, let N be a normal subgroup of

H; then either N ≤ Z(H) (and is therefore normal in G), or N contains an element

h ∈ H with rank(Mh) = 2 (which is dealt with in Example 2.2.1, case (a)), or N is

a product of subgroups of the form 〈h〉, for h ∈ H of the form given in the previous

paragraph, and in this case we have just shown that N is normal in G.

2.3 Isolators and p-saturations

Let G be a p-valuable group, and fix a p-valuation ω on G, so that G is complete p-

valued of finite rank. Recall the definition of the p-saturation SatG of G (with respect

to ω) from [13, IV, 3.3.1.1]: this is again a complete p-valued group of finite rank,

and there is a natural isometry identifying G with an open subgroup of SatG [13, IV,

3.3.2.1]. We will prove a few basic facts about p-saturations.

Firstly, we will prove a basic relationship between isolators and p-saturations.

Lemma 2.3.1. Let G be a complete p-valued group of finite rank, and let H be a

closed normal (and hence orbital) subgroup ofG. Then iG(H) = SatH∩G (considered

as subgroups of SatG).
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Proof. [SatH : H] < ∞ by [13, IV, 3.4.1], and SatH is a closed normal subgroup

of SatG by [13, IV, 3.3.3], so S := SatH ∩G is a closed normal (and hence orbital)

subgroup of G, and contains H as a subgroup of finite index. Hence, by Definition

1.2.6, S is contained in iG(H).

To show the reverse inclusion, we will consider the group iG(H)/S, which is a finite

subgroup of G/S (as it is a quotient of iG(H)/H, which is finite by Proposition

1.2.7). But G/S is isomorphic to GSatH/SatH, a subgroup of the torsion-free group

SatG/SatH (see [13, IV, 3.4.2] or [13, III, 3.3.2.4]). In particular, G/S has no non-

trivial finite subgroups, so we must have iG(H) = S.

Remark. Of course, iG(H) is independent of the choice of ω.

Lemma 2.3.2. Let G be a complete p-valued group of finite rank, which we again

identify with an open subgroup of its p-saturation S. Suppose S ′ is a p-saturated

closed normal subgroup of S, and set G′ = S ′ ∩G. Then there is a natural isometry

S/S ′ ∼= Sat (G/G′).

Proof. We will show that S/S ′ satisfies the universal property for Sat (G/G′) [13, IV,

3.3.2.4]. Clearly we may regard G/G′ ∼= GS ′/S ′ as a subgroup of S/S ′. Note also

that S/S ′ is p-saturated, by [13, III, 3.3.2.4]. Also, as G′ is open in S ′ and S ′ is

p-saturated, we have that S ′ = SatG′.

Let H be an arbitrary p-saturated group and ϕ : G/G′ → H a homomorphism of

p-valued groups. We must first construct a map ψ : S/S ′ → H. To do this, we first

compose ϕ with the natural surjection G → G/G′ to get a map α : G → H, which

we may then extend uniquely to a map β : S → H using the universal property of

S = SatG, so that α = β|G and the following diagram commutes.
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G

α

&&// //� _

��

G/G′ ϕ
// H

S
β

;;

Now we wish to show that β descends to a map S/S ′ → H. To do this, we first study

the restriction of α to G′ and of β to S ′. The following diagram commutes:

G′
α|G′ //� _

��

H

S ′
β|S′

>>

and so, since S ′ = SatG′, β|S′ must be the unique extension of α|G′ to a map S ′ → H,

as S ′ = SatG′. But α factors through G/G′, i.e. α|G′ is the trivial homomorphism

G′ → H, so it extends to the trivial homomorphism S ′ → H. By uniqueness, we

must have S ′ ⊆ ker β. This shows that β induces a map ψ : S/S ′ → H.

Finally, suppose ϕ : G/G′ → H has two distinct extensions ψ1, ψ2 : S/S ′ → H. Then

we may compose them with the natural surjection S → S/S ′ to get two distinct maps

β1, β2 : S → H. Their restrictions α1, α2 : G → H to G must therefore also be dis-

tinct, for if not, then the map α1 = α2 : G→ H has (at least) two distinct extensions

to maps S → H, contradicting the universal property of S = SatG. Finally, if α1 and

α2 are distinct, then they descend to distinct maps ϕ1, ϕ2 : G/G′ → H, contradicting

our assumption. So the extension of ϕ to ψ is unique.

Remark. Lemma 2.3.2 holds even if G does not have finite rank, and hence is only

closed (not necessarily open) in its p-saturation S.

Definition 2.3.3. Let G be an arbitrary group. A central series for G is a sequence

of subgroups

G = G1 �G2 � · · ·�Gn = 1

with the property that [G,Gi] ≤ Gi+1 for each i. (For the purposes of this definition,

Gj is understood to mean 1 if j > n, and G if j < 1.)
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We will say that a central series is strongly central if also [Gi, Gj] ≤ Gi+j for all i and

j.

An abelian series for G a sequence of subgroups

G = G1 �G2 � · · ·�Gn = 1

with the property that [Gi, Gi] ≤ Gi+1 for each i.

When G is a topological group, we will insist further that all of the Gi should be

closed subgroups of G.

Remark. We will be working with nilpotent p-valuable groups G. It will be useful

for us to define the isolated lower central series of G, which will turn out to be the

fastest descending central series of closed subgroups

G = G1 �G2 � · · ·�Gr = 1

with the property that the successive quotients Gi/Gi+1 are torsion-free (and hence

p-valuable, by [13, IV, 3.4.2]). We will also prove that the isolated lower central series

is a strongly central series. (We demonstrate an isolated derived series for soluble

p-valued groups at the same time.)

Lemma 2.3.4. Let G be a complete p-valued group of finite rank, and G1 ≥ G2 closed

normal subgroups of G with G1/G2 an abelian pro-p group (which is not necessarily

p-valued). Let Si = SatGi for i = 1, 2. Then S1/S2 is abelian and torsion-free (and

hence p-valued), and has the same rank as G1/G2 as a Zp-module.

Proof. As S2 is p-saturated, S1/S2 is torsion-free, and so

G1/(S2 ∩G1) ∼= G1S2/S2 ≤ S1/S2
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is torsion-free. G1/G2 maps onto G1/(S2 ∩ G1) with finite kernel (by Lemma 2.3.1

and Proposition 1.2.7, and the assumption that G has finite rank), so G1/(S2 ∩ G1)

is abelian of the same Zp-rank as G1/G2. By Lemma 2.3.2, S1/S2 is the p-saturation

of G1/(S2 ∩G1), so is still abelian of the same Zp-rank.

Before proving the main result of this section, we first need a technical lemma.

Lemma 2.3.5. Let G be a complete p-valued group of finite rank, and let H and N

be two orbital closed subgroups. Then, denoting by (·) topological closure inside G,

we have

[iG(H), iG(N)] ≤ iG([H,N ]).

Proof. Write L := iG([H,N ]). This is normal in G, as G is orbitally sound (Lemma

2.1.1), and the quotient G/L is still p-valued as it is torsion-free [13, IV, 3.4.2].

Suppose first that L = 1, so that [H,N ] = 1. Then, for any h ∈ iG(H), there is some

integer n such that hp
n ∈ H, so that [g, hp

n
] = 1 for all g ∈ N . But this is the same

as saying that hp
n

= (hg)p
n
; and, as G is p-valued, [13, III, 2.1.4] implies that h = hg.

As g and h were arbitrary, we see that [iG(H), N ] = 1. Repeat this argument for N

to show that [iG(H), iG(N)] = 1.

If L 6= 1, we may pass to G/L. Write π : G→ G/L for the natural surjection, so that

π
(
[iG(H), iG(N)]

)
= [π(iG(H)), π(iG(N))]. (2.3.1)

Now, π(H) is a closed orbital subgroup of π(G), and π(iG(H)) is a closed orbital

subgroup of π(G) containing π(H) as an open subgroup, so that

iπ(G)(π(H)) ≥ π(iG(H)),

43



and similarly for N . Together with (2.3.1), this implies that

π
(
[iG(H), iG(N)]

)
≤ [iπ(G)(π(H)), iπ(G)(π(N))].

But the right-hand side is now equal to π(1), by the previous case, which shows that

[iG(H), iG(N)] ≤ L as required.

Corollary 2.3.6. Let G be a p-valuable group. Define two series:

Gi = iG(γi), where


γ1 = G,

γi+1 = [γi, G] for i ≥ 1;

G(i) = iG(Di), where


D0 = G,

Di+1 = [Di,Di] for i ≥ 0,

where the bars denote topological closure inside G. If G is nilpotent, then (Gi) is a

strongly central series for G, i.e. a central series in which [Gi, Gj] ≤ Gi+j. If G is

soluble, then (G(i)) is an abelian series for G. The quotients Gi/Gi+1 and G(i)/G(i+1)

are torsion-free, and hence p-valuable.

Remark. We prove this using p-saturations, but the resulting closed subgroups Gi

and G(i) are independent of the choice of p-valuation ω on G.

The series (G(i)) above is a generalisation of the series studied in [19, proof of lemma

2.2.1], there called (Gi).

Proof. Fix a p-valuation ω on G throughout.

Firstly, we will show that (Gi) is an abelian series. The claim that (G(i)) is an abelian

series will follow by an identical argument.

The (abstract) lower central series (γi) is an abelian series for G as an abstract group

(i.e. the subgroups γi are not necessarily closed in G), and so the series (γi) is a series
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of closed normal subgroups of G, which is still an abelian series by continuity. (That

is, γi/γi+1 is central in G/γi+1, and hence γi/γi+1 is central in G/γi+1, and now by

continuity we have that all of γi/γi+1 is central.) Now, applying Lemma 2.3.4 shows

that (Sat γi) is also an abelian series; and by Lemma 2.3.1, we see that Gi = Sat γi∩G

for each i, so that (Gi) is an abelian series.

Secondly, we address the claim that the quotients Gi/Gi+1 are torsion-free and hence

p-valuable: this follows from [13, III, 3.1.7.6 / IV, 3.4.2], as the Gi+1 are isolated in

G. The case of the quotients G(i)/G(i+1) is again identical.

Thirdly, we must show that Gi−1/Gi is central in G/Gi. Certainly γi−1Gi/Gi is central

in G/Gi, because γi ≤ Gi, and so

γi−1Gi/Gi ≤ Z(G/Gi)

by continuity. However, [4, lemma 8.4(a)] says that Z(G/Gi) is isolated in G/Gi, so

by taking (G/Gi)-isolators of both sides, we must have

iG/Gi
(
γi−1Gi/Gi

)
≤ Z(G/Gi);

and the left-hand side is clearly equal to Gi−1/Gi by Lemma 1.2.5(i) and Definition

1.2.6.

Finally, note that

[γi, γj] ≤ γi+j

by [23, 5.1.11(i)], and so by taking closures,

[γi, γj] ≤ γi+j.

But [γi, γj] ≤ [γi, γj], as the function G×G→ G given by (a, b) 7→ [a, b] is continuous.
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Hence

[γi, γj] ≤ γi+j,

which implies

[γi, γj] ≤ γi+j,

and so, by Lemma 2.3.5, we may take isolators to show that

[iG(γi), iG(γj)] ≤ iG

(
[γi, γj]

)
≤ iG(γi+j),

i.e. [Gi, Gj] ≤ Gi+j.

Definition 2.3.7. When G is a nilpotent (resp. soluble) p-valued group of finite

rank, the series (Gi) (resp. (G(i))) defined in Corollary 2.3.6 is the isolated lower

central series (resp. isolated derived series) of G.

Proof of Theorem D(ii). The majority of this theorem follows from Corollary 2.3.6.

It remains only to prove that these descending series are the unique fastest such series,

in an appropriate sense. We will state and prove this precisely for the case of the

isolated lower central series of a nilpotent p-valuable group; the soluble case is very

similar.

Let G be a nilpotent p-valuable group, and let

G = G1 �G2 � · · ·�Gr = 1

be its isolated lower central series. Take also any central series

G = H1 �H2 � · · ·�Hr � . . .

for G of isolated orbital closed normal subgroups. We will show that Gi ≤ Hi for
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each i.

We proceed by induction. We clearly have G1 ≤ H1; now suppose that, for some k,

we have Gi ≤ Hi for all i < k. Now clearly

[G,Gk−1] ≤ [G,Hk−1] ≤ Hk;

as Hk is already closed and G-isolated, we may take the closure and G-isolator of the

first and last terms of this inclusion to get

iG

(
[G,Gk−1]

)
≤ Hk.

But the left-hand expression here clearly contains iG(γk), which is just Gk.

2.4 The conjugation action of G

In this subsection, we will study how nilpotent-by-finite compact p-adic analytic

groups G act by conjugation on certain torsion-free abelian and nilpotent subquo-

tients. First, we slightly extend the term “orbitally sound”.

Definition 2.4.1. Let G and H be profinite groups, and suppose G acts (continu-

ously) on H. Then G permutes the closed subgroups of H. We say that the action

of G on H is orbitally sound if, for any closed subgroup K of H with finite G-orbit,

there exists an open subgroup K ′ of K which is normalised by G.

Recall the group of torsion units of Zp:

t(Z×p ) =


{±1} p = 2

F×p p > 2.
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Lemma 2.4.2. Let A be a free abelian pro-p group of finite rank. Let G be a profinite

group of finite rank acting orbitally soundly and by automorphisms of finite order on

A. Then, for each g ∈ G, there exists

ζ = ζg ∈ t(Z×p )

such that g · x = ζx for all x ∈ A. This is multiplicative in G, in the sense that

ζgζh = ζgh for all g, h ∈ G.

Proof. Write ϕ for the automorphism of A given by conjugation by g. We may view

ϕ as an automorphism of the Qp-vector space AQp := A ⊗
Zp
Qp.

As the action of G on A is orbitally sound and G has finite rank, in particular, we

have

〈x〉 ∩ 〈ϕ(x)〉 6= {0}

(as Qp-vector subspaces) for every x ∈ AQp . But this just means that x is an eigenvec-

tor of the linear map ϕ. If all elements of AQp are eigenvectors of ϕ, then they must

have a common eigenvalue, say ζ. The statement that G acts on A by automorphisms

of finite order means that the eigenvalue ζ for x is of finite order, ζ ∈ t(Z×p ).

Multiplicativity is clear from the fact that (gh) · x = g · (h · x) for all g, h ∈ G.

Remark. Assume that G is a nilpotent-by-finite, orbitally sound compact p-adic an-

alytic group. In the case when H is an open subgroup of G containing ∆+, with the

property that N := H/∆+ is nilpotent p-valuable, we may consider the isolated lower

central series of Corollary 2.3.6 for N :

N = N1 �N2 � · · ·�Nr = 1,
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and take their preimages in G to get a series of characteristic subgroups of H:

H = H1 �H2 � · · ·�Hr = ∆+,

with the property that each Ai := Hi/Hi+1 is a free abelian pro-p group of finite rank.

G clearly acts orbitally soundly on each Ai, as G is itself orbitally sound. Furthermore,

as [H,Hi] ≤ Hi+1 for each i, we see that the action G → Aut(Ai) contains the open

subgroup H in its kernel, and so G acts by automorphisms of finite order. Thus

we may apply Lemma 2.4.2 to see that G acts on each Ai via a homomorphism

ξi : G→ t(Z×p ).

That is, given any g ∈ G and h ∈ Hi, and writing ζ = ξi(g) and a = hHi+1 ∈ Ai, we

have

(hg)h−ζ ∈ Hi+1,

or equivalently (still in multiplicative notation)

ag = aζ .

We now show that the action of an automorphism of G on the quotients Ai is strongly

controlled by its action on A1. This is an important property that the isolated lower

central series shares with the usual lower central series of abstract nilpotent groups;

cf. [23, 5.2.5] and the surrounding discussion.

Lemma 2.4.3. Let H be a finite-by-(nilpotent p-valuable) group, and continue to

write Ai := Hi/Hi+1 as in the remark above. Let α be an automorphism of H inducing

multiplication by ζi ∈ t(Z×p ) on each Ai. Then ζi = ζ i1 for each i.
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Proof. Choose i, and fix some x ∈ H1, y ∈ Hi. The map

A1 ⊗
Zp
Ai → Ai+1

xH2 ⊗ yHi+1 7→ [x, y]Hi+2

is a Zp〈α〉-module homomorphism, and its image is open in Ai+1 (by definition of the

isolated lower central series). Write ζ1 = ζ, and proceed by induction on i: suppose

that ζi = ζ i. Now, for any positive integers a and b, we have

[xa, yb]Hi+2 = [x, y]abHi+2

by [9, 0.2(i), (ii)] and by using the fact that [x, y]Hi+2 is central in H/Hi+2. Hence,

by continuity, this is true for any a, b ∈ Zp, and so

α([x, y]Hi+2) = [xζ , yζ
i

]Hi+2

= [x, y]ζ
i+1

Hi+2.

We deduce:

Corollary 2.4.4. Let G be a nilpotent-by-finite, orbitally sound compact p-adic

analytic group, and H an open normal subgroup of G containing ∆+ such that H/∆+

is nilpotent p-valuable. Then the conjugation action of G on H induces an action of G

on H/H2 given by the map ξ1 : G → t(Z×p ) ≤ Aut(H/H2) defined above. Moreover,

H ≤ ker ξ1.

Remark. If N = H/∆+ is p-saturable, we may take its corresponding Lie algebra

L by Lazard’s isomorphism of categories [13, IV, 3.2.6]. As in [4, proof of lemma

8.5]: using [4, lemma 4.2] and the fact that the N/Ni are torsion-free, we can pick an

ordered basis [13, III, 2.2.4] B for N which is filtered relative to the filtration on N :
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that is,

B = {n1, n2, . . . , ne},

and there exists a filtration of sets

B = B1 ⊃ B2 ⊃ · · · ⊃ Br−1 6= ∅

such that Bi is an ordered basis for Ni for each 1 ≤ i ≤ r − 1. We may order

the elements so that, for some integers 1 = k1 < k2 < · · · < kr−1 < e, we have

Bi = {nki+1, . . . , ne} for each 1 ≤ i ≤ r − 1. Taking logarithms of these basis

elements gives us a basis for L, and then Lemma 2.4.3 implies that, with respect to

this basis, the automorphism of L induced by α has the special block lower triangular

form



ζId1 0 0 . . . 0

∗ ζ2Id2 0 . . . 0

∗ ∗ ζ3Id3 . . . 0

...
...

...
. . .

...

∗ ∗ ∗ . . . ζr−1Idr−1


,

where di = rk(Li/Li+1) = rk(Mi) and I denotes the identity matrix.

2.5 The finite-by-(nilpotent p-valuable) radical

Let G be a nilpotent-by-finite compact p-adic analytic group. Consider the set

S(G) =

{
H �

O
G

∣∣∣∣ H/∆+(H) is nilpotent and p-valuable

}
,

51



where “H �
O
G” means “H is an open normal subgroup of G”. S(G) is nonempty, as

we can pick an open normal nilpotent uniform subgroup of G by [9, 4.1], and hence

contains a maximal element. We will show that this maximal element is unique, and

we will call this element the finite-by-(nilpotent p-valuable) radical of G, and once we

have shown its uniqueness we will denote it by FNp(G).

Remark. Once we have shown the existence and uniqueness of FNp(G), it will be

clear that it is a characteristic open subgroup of G (as automorphisms of G leave

S(G) invariant), and contained in nio(G) (by Corollary 2.1.4 and Theorem A).

The quotient group

nio(G)/FNp(G)

is isomorphic to a subgroup of t(Z×p ) by Corollary 2.4.4. When p > 2, t(Z×p ) is a p′-

group, and so FNp(G)/∆+ is the unique Sylow pro-p subgroup of nio(G)/∆+. (This

fails for p = 2: the “2-adic dihedral group” G = Z2oC2 has ∆+(G) = 1, nio(G) = G,

and is its own Sylow 2-subgroup, but FNp(G) = Z2.)

In looking for maximal elements H of S(G), we may make an immediate simplifica-

tion. By maximality, any such H must have ∆+(H) = ∆+, i.e. maximal elements of

S(G) are in one-to-one correspondence with maximal elements of

S ′(G) =

{
H �

O
G

∣∣∣∣ ∆+ ≤ H, H/∆+ is nilpotent and p-valuable

}
,

and this set is clearly in order-preserving one-to-one correspondence with the set

S(G/∆+). Hence we may immediately assume without loss of generality that ∆+ = 1.

Lemma 2.5.1. Let G be a nilpotent-by-finite compact p-adic analytic group with

∆+ = 1. Then

(i) there exists a nilpotent p-valuable open normal subgroup H of G which contains
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∆,

(ii) any such H satisfies the property that Z(H) = ∆.

Proof. First, suppose we are given a nilpotent p-valuable open normal subgroup H.

Take x ∈ ∆: CG(x) is open in G by definition, and so

CH(x) = CG(x) ∩H

is open in H. Therefore, for any h ∈ H, we can find some integer k such that

hp
k ∈ CH(x). This means that (x−1hx)p

k
= hp

k
, and so by [13, III, 2.1.4], we may

take (pk)th roots inside H to see that x−1hx = h. In other words, x ∈ C∆(H).

Now suppose further that H contains ∆. Then x ∈ Z(H). In fact, as we have

Z(H) ≤ ∆(H) by definition and ∆(H) ⊆ ∆ by Lemma 1.2.3(ii), we see that ∆ is all

of the centre of H. This establishes (ii).

To prove (i), let N be an open normal nilpotent uniform subgroup [9, 4.1] of G. Form

H = N∆, again an open normal subgroup of G. The first paragraph above shows that

[N,∆] = 1; we also know from Lemma 1.2.3(v) that ∆ is abelian and N is nilpotent.

This forces H to be nilpotent and open in G, and to contain ∆ in its centre.

It remains only to show that H is p-valuable – in fact, we will show it is uniform. As H

is nilpotent, its set t(H) of torsion elements forms a normal subgroup [23, 5.2.7], and

if t(H) is non-trivial then t(H)∩Z(H) must be non-trivial [23, 5.2.1]; but Z(H) = ∆

is torsion-free by Lemma 1.2.3(v), so H must be torsion-free. Now it is easy to check

that H is powerful as in [9, 3.1], so that H is uniform by [9, 4.5].

Lemma 2.5.2. Let G be a nilpotent-by-finite compact p-adic analytic group. Then

S(G) is closed under finite joins, and hence contains a unique maximal element H,

which is characteristic as a subgroup of G.
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Proof. First, observe that, for an open normal subgroup K of G, we have K ∈ S(G)

if and only if K ∈ S(G) (where bars denote quotient by ∆+). So we continue to

assume without loss of generality that ∆+ = 1.

Suppose we are given K,L ∈ S(G): then we must show that KL ∈ S(G). As K and

L are open and normal, it is obvious that KL is too; and since K and L are also

nilpotent, Fitting’s theorem [27, 1B, Proposition 15] implies that KL is nilpotent. But

now, again by [23, 5.2.7], t(KL) = ∆+(KL) ≤ ∆+ = 1 – that is, KL is torsion-free,

and hence p-valuable by Lemma 2.1.3.

Now let H be a maximal element of S(G). Assume for contradiction that H does not

contain every other element of S(G) as a subgroup. Then we may pick some L ∈ S(G)

not contained in H, and form HL ∈ S(G); but now H � HL, a contradiction to the

maximality of H. So H must be the unique maximal element of S(G).

As the set S(G) is invariant under automorphisms of G, this maximal element H is

characteristic in G.

Definition 2.5.3. Let G be a nilpotent-by-finite compact p-adic analytic group. Its

finite-by-(nilpotent p-valuable) radical FNp(G) is the open characteristic subgroup

defined in Lemma 2.5.2.

Proof of Theorem D(i). This follows from Lemma 2.5.2 and the remark made at the

beginning of this section.

Proof of Theorem E. This follows from Lemma 2.4.3 and Theorem D(i).
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Chapter 3

Quotients kG/M by minimal prime

ideals

3.1 The untwisting theorem

Definition 3.1.1 (Universal property of completed tensor product). [8, §2] Let R

be a pseudocompact k-algebra, and let A be a right and B a left pseudocompact

R-module. Then the completed tensor product

A⊗̂
R
B

is a k-module satisfying the following universal property: there is a unique R-bihomo-

morphism

A×B → A⊗̂
R
B

through which any given R-bihomomorphism A × B → C into a pseudocompact k-

module C factors uniquely. (An R-bihomomorphism θ : A× B → C is a continuous

k-module homomorphism satisfying θ(ar, b) = θ(a, rb) for all a ∈ A, b ∈ B, r ∈ R.)
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If R = k, and A and B are k-algebras, then their completed tensor product is also a

k-algebra.

We give also a construction.

Lemma 3.1.2. [8, §2] Let k be a commutative pseudocompact ring and R a pseu-

docompact k-algebra. Let A be a right and B a left pseudocompact R-module: then

the k-module defined by

A⊗̂
R
B := lim←−

U,V

(
A/U ⊗

R
B/V

)

where U and V range over the open submodules of A and B respectively, satisfies the

universal property for the completed tensor product of A and B.

Theorem 3.1.3 (untwisting). Let G be a compact p-adic analytic group, k a com-

mutative pseudocompact ring, and kG the associated completed group ring. Suppose

H is a closed normal subgroup of G, and I is an ideal of kH such that I ·kG = kG ·I.

Write (·) : kG → kG/IkG, so that kH = kH/I. Suppose also that we have a

continuous group homomorphism δ : G→ kH
×

satisfying

(i) δ(g) = g for all g ∈ H,

(ii) δ(g)−1g centralises kH for all g ∈ G.

Then there exists an isomorphism of pseudocompact k-algebras

Ψ : kG→ kH⊗̂
k
k[[G/H]],

where ⊗̂ denotes the completed tensor product.

Proof. Firstly, the function G→
(
kH⊗̂

k
k[[G/H]]

)×
given by

g 7→ δ(g)⊗ gH
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is clearly a continuous group homomorphism, and so the universal property of com-

pleted group rings allows us to extend this function uniquely to a continuous ring

homomorphism

Ψ′ : kG→ kH⊗̂
k
k[[G/H]].

In the same way, we may extend δ uniquely to a map δ : kG→ kH, and by assumption

(i), δ|kH is just the natural quotient map kH → kH. Hence ker δ must contain the

two-sided ideal IkG, so that Ψ′ descends to a continuous ring homomorphism

Ψ : kG→ kH⊗̂
k
k[[G/H]].

We claim that this is the desired isomorphism. To show that Ψ is an isomorphism,

we will construct a continuous ring homomorphism

Φ : kH⊗̂
k
k[[G/H]]→ kG

and show that Φ and Ψ are mutually inverse.

Consider the continuous function ε : G→ kG
×

given by

ε(g) = δ(g)−1g.

ε is a group homomorphism: indeed, for all g, h ∈ G, we have

ε(g)ε(h) = δ(g)−1g δ(h)−1h

= δ(g)−1g δ(h)−1 h

= δ(h)−1 δ(g)−1g h by assumption (ii)

= δ(gh)−1gh = ε(gh).
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It is clear that, by assumption (i), ker ε contains H, and so descends to a continuous

group homomorphism ε : G/H → kG
×

; and so again by the universal property we

get a continuous ring homomorphism ε : k[[G/H]] → kG. We also clearly have a

continuous inclusion kH → kG.

These functions, and the universal property of Definition 3.1.1, allow us to define the

desired map Φ : kH⊗̂
k
k[[G/H]]→ kG by

Φ(x⊗ y) = xε(y).

This map Φ is clearly bilinear in its arguments; to show that it is a ring homomor-

phism, we need only show that

Φ(x1 ⊗ y1)Φ(x2 ⊗ y2) = Φ(x1x2 ⊗ y1y2),

i.e. that ε(y1) commutes with x2 inside kG: but this is assumption (ii).

It now remains only to check that Φ and Ψ are mutually inverse. Indeed, for all g ∈ G

and x ∈ kH,

Φ(Ψ(g)) = Φ(δ(g)⊗ gH)

= Φ(δ(g)⊗H)Φ(1⊗ gH)

= (δ(g))(ε(g))

= g,
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and

Ψ(Φ(x⊗ gH)) = Ψ(xε(g))

= Ψ(xδ(g)−1)Ψ(g)

= (xδ(g)−1 ⊗ 1)(δ(g)⊗ gH)

= x⊗ gH.

Remark. Let M be a minimal prime of kG, and e ∈ cpik∆+
(M) (as in Notation

1.5.2). For the rest of §3, and much of §4, we will insist on the mild condition that

G centralise e, or equivalently that M ∩ k∆+ remain prime as an ideal of k∆+. This

is mostly to keep the notation simple: we will return briefly to this issue in §4.3, and

show that we have not lost much generality by doing this.

Corollary 3.1.4. Let G be a compact p-adic analytic group, k a finite field of char-

acteristic p, and M a minimal prime of kG. In Notation 1.5.2, choose e ∈ cpik∆+
(M),

and assume (as in the above remark) that G centralises e, so that (1 − e)kG = M

and

kG/M ∼= kG/M = e · kG.

Suppose we are given a continuous group homomorphism

δ : G→ (e · k∆+)×,

satisfying

(i) δ(g) = e · g for all g ∈ ∆+,

(ii) δ(g)−1g centralises e · k∆+ for all g ∈ G.
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Then there exists an isomorphism

Ψ : e · kG→ e · k∆+ ⊗
k
k[[G/∆+]],

and hence also an isomorphism

ψ : e · kG→Mt(k
′[[G/∆+]])

for some positive integer t and some finite field extension k′/k.

Proof. In Theorem 3.1.3, take H = ∆+, and take I to be the ideal of k∆+ generated

by J(k∆+) and 1− a, where a ∈ k∆+ is any element whose image in k∆+ is e. This

gives the isomorphism

Ψ : e · kG→ e · k∆+⊗̂
k
k[[G/∆+]];

but now, as e · k∆+ is finite-dimensional as a vector space over k, [8, Lemma 2.1(ii)]

implies that the right hand side is equal to the ordinary tensor product

e · k∆+ ⊗
k
k[[G/∆+]].

Now the isomorphism ψ is given by composing Ψ with the isomorphism of Lemma

1.5.1(iii).

Remark. This result is a strong generalisation of the result given in [5, 10.1], in the

case when G ∼= N ×∆+. In that case, we may simply take δ to be the composite of

the natural map N ×∆+ → ∆+ given by projection onto the second factor, and the

inclusion map ∆+ ↪→ (e · k∆+)×.
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3.2 Almost-faithfulness and untwisted ideals

Throughout this section:

• G is a compact p-adic analytic group, and k is a finite field of characteristic p,

• M is a minimal prime ideal of kG and e ∈ cpik∆+
M , so that Notation 1.5.2

applies

• assume further that G centralises e, and that we have an untwisting map

δ : G→ (e · k∆+)×

satisfying the hypotheses of Corollary 3.1.4, and write

ψ : e · kG→Mt(k
′[[G/∆+]])

for the corresponding isomorphism given by Corollary 3.1.4,

• write q : kG→ e · kG for the natural quotient map.

(We leave it until section 4.1 to find such a δ for a certain large class of groups G.)

In this setting, we have the following one-to-one correspondences of ideals:{
ideals of
kG which
contain M

}
oo //

q
44

{
ideals of
e · kG

}
oo //

ψ
11

{
ideals of

Mt(k
′[[G/∆+]])

}
oo
Morita
equiv. //

{
ideals of
k′[[G/∆+]]

}
.

Lemmas 1.6.3 and 1.6.4 may now be interpreted as demonstrating that the first and

third correspondences in this diagram preserve some notion of control (as defined in

Definition 1.6.1). The middle correspondence trivially preserves control, as ψ is an

isomorphism. We remark also that all three correspondences preserve primality, the

third by Lemma 1.6.5.
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In this section, we show that some appropriate notion of almost-faithfulness (see

Definition 1.6.2) is also preserved by these correspondences. That is, let P be any

ideal of kG containing M . Then we have

ψ ◦ q(P ) = Mt(p),

where p is some ideal of k′[[G/∆+]]. Recall the definition of (−)† from Definition

1.6.2: we intend to show that the groups P † (a subgroup of G) and p† (a subgroup

of G/∆+) are closely related.

We will abuse notation to identify the two rings

e · k∆+ ⊗
k
k[[G/∆+]] = e · k∆+ ⊗

k′
k′[[G/∆+]]

in the obvious way. Then, laying out the structure more explicitly, we have

Ψ(e · P ) = e · k∆+ ⊗
k′
p

in the notation of Corollary 3.1.4.

Suppose that g∆+ ∈ p† for some g ∈ G, i.e. (g − 1)∆+ ∈ p. Then

(1⊗ g∆+)− (1⊗∆+) ∈ Ψ(e · P ),

so

Φ(1⊗ g∆+)− Φ(1⊗∆+) = δ(g)−1g − e ∈ e · P .

This motivates the following definition:
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Definition 3.2.1. Write

P †δ = {g ∈ G
∣∣ δ(g)−1g − e ∈ e · P},

so that P †δ is the kernel of the composite map

G
ε // (e · kG)× ∼ // (kG/M)× // // (kG/P )×,

where ε : G→ (e ·kG)× is defined by ε(g) = δ(g)−1g. (As we saw in the proof of The-

orem 3.1.3, ε is a continuous group homomorphism.) Compare this with Definition

1.6.2: this is a “twisted” version of P †.

Now, since ε(g) = 1 for all g ∈ ∆+, we have ∆+ ≤ P †δ for any ideal P . We say that

P is δ-faithful if P †δ = ∆+ (and P is δ-unfaithful if P †δ is infinite).

Lemma 3.2.2. The following are equivalent:

(i) P is almost faithful (as an ideal of kG).

(ii) P is δ-faithful.

(iii) p is faithful (as an ideal of k′[[G/∆+]]).

Proof.

(ii)⇔ (iii) By the above calculation, we see that P is defined to be a δ-faithful ideal

of kG precisely when p is a faithful ideal of k′[[G/∆+]].

(i)⇔ (ii) Let m = |im(δ)|. Note that m < ∞ as k is assumed to be a finite field.

Then δ(gm) = e for all g ∈ G, so
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gm ∈ P †δ ⇔ δ(gm)gm
−1 − e ∈ e · P

⇔ egm
−1 − e ∈ e · P

⇔ e(gm
−1 − 1) ∈ e · P

⇔ gm
−1 − 1 ∈ P

⇔ g−m − 1 ∈ P

⇔ g−m ∈ P †

⇔ gm ∈ P †,

so writing (P †)m := 〈gm|g ∈ P †〉, and likewise (P †δ )m, we see that these two subgroups

are equal.

Now, suppose P is almost faithful, and so in particular P † is torsion; then the sub-

group (P †)m = (P †δ )m is also torsion, and since gm is torsion for any g ∈ P †δ , we

have that g must also be torsion. So P †δ is a torsion subgroup of G. Hence it must

be finite: indeed, given any open normal uniform subgroup U of G, the kernel of

the composite map P †δ ↪→ G → G/U is a subgroup of U ∩ P †δ , which is trivial as U

is torsion-free [9, 4.5]. So P †δ embeds into the finite group G/U , and as P †δ is also

normal in G by Definition 3.2.1, it is a finite orbital subgroup of G and hence must

be a subgroup of ∆+, i.e. P is δ-faithful. The converse is similar.

In summary:

Corollary 3.2.3. Assume the hypotheses of Corollary 3.1.4. Let P be an ideal of

kG containing M , and denote by q : kG → kG/M the natural quotient map. Write

ψ ◦ q(P ) = Mt(p), where p is an ideal of k′[[G/∆+]]. Then p is faithful if and only if

P is almost faithful; and p is prime if and only if P is prime.
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Chapter 4

The untwisting map

4.1 The case when G is finite-by-(pro-p)

In this section, we introduce a group AH for each closed subgroup H of G. By

studying the structure of the group AG in the case when G/∆+ is pro-p, we will find

an untwisting map δ : G→ (e · k∆+)× satisfying the conditions of Corollary 3.1.4.

Let G be a compact p-adic analytic group, k a finite field of characteristic p, M a

minimal prime of kG, and e ∈ cpik∆+
(M), which we continue to suppose is centralised

by G. Then e · k∆+ ∼= Mt(k
′), and in particular its automorphisms are all inner by

the Skolem-Noether theorem [28, Tag 074P].

Note that both G and (e · k∆+)× act on the ring e · k∆+ by conjugation, and so we

get group homomorphisms G→ Inn(e · k∆+) and (e · k∆+)× → Inn(e · k∆+).

Definition 4.1.1. For any closed subgroup H ≤ G, define AH to be the fibre product

of H and (e · k∆+)× over Inn(e · k∆+) with respect to the above maps,

AH = (e · k∆+)× ×
Inn(e·k∆+)

H,
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a subgroup of (e · k∆+)× × H. Write the projection map onto the second factor as

πH : AH → H.

As e · k∆+ ∼= Mt(k
′), we have (e · k∆+)× ∼= GLt(k

′). The centre of (e · k∆+)× is

therefore isomorphic to Z(GLt(k
′)), which we will identify with k′×, and the inner

automorphism group Inn(e · k∆+) is isomorphic to PGLt(k
′). In particular, AH is an

extension of H by k′×. Indeed, the following diagram commutes and has exact rows:

1 // k′×
i // AH

πH //

��

H //

��

1

1 // k′× // (e · k∆+)× // Inn(e · k∆+) // 1.

The inclusion i : k′× → AH is given by i(x) = (x, 1). (The image of i is just A{1}.)

We will now examine the subgroup structure of AG.

Lemma 4.1.2. IfN is a closed normal subgroup ofG, thenAN�AG, andAG/AN ∼= G/N .

Proof. Firstly, clearly AN is naturally a subgroup of AG, and the following diagram

commutes and has exact rows:

1 // k′× // AN
πN //

� _

��

N //� _

��

1

1 // k′× // AG πG
// G // 1.

Let (r, n) ∈ AN and (s, g) ∈ AG. For any x ∈ (e ·k∆+), we have xr = xn and xs = xg,

so we get xs
−1rs = xg

−1ng. As g−1ng ∈ N , we have

(s, g)−1(r, n)(s, g) = (s−1rs, g−1ng) ∈ AN ,

and so AN � AG.

Hence we may take cokernels of the vertical maps, completing the above diagram to

the following commutative diagram, whose columns and first two rows are exact:
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1

��

1

��

1

��
1 // k′× // AN //

��

N //

��

1

1 // k′× //

��

AG //

��

G //

��

1

1 // 1 //

��

AG/AN //

��

G/N //

��

1

1 1 1

By the Nine Lemma [12, Chapter XII, Lemma 3.4], the third row is now also exact.

Consider the natural map ∆+ → (e · k∆+)× given by g 7→ e · g. There is a “diagonal”

inclusion map d : ∆+ → AG given by g 7→ (e · g, g), and the image d(∆+) is normal

in AG: indeed, suppose we are given (x, h) ∈ AG. Then

d(g)(x,h) = (x, h)−1(e · g, g)(x, h)

= ((e · g)x, gh)

= ((e · g)h, gh) by definition of AG

= d(gh).

Remark. The map d, considered as a map from ∆+ to A∆+ , splits the map π∆+ .

Hence there are copies of k′× and ∆+ in A∆+ , and they commute: given x ∈ k′×,

g ∈ ∆+, we have

i(x)d(g) = (x, 1)(e · g, g) = (e · g, g)(x, 1) = d(g)i(x)

as x commutes with e · g inside e · k∆+. In other words,

A∆+ = i(k′×)d(∆+) ∼= k′× ×∆+.
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Lemma 4.1.3. Let G be a compact p-adic analytic group. Suppose that we have an

injective group homomorphism σ : G → AG splitting πG such that, for all g ∈ ∆+,

we have σ(g) = (e · g, g). Then we can find a δ satisfying the conditions of Corollary

3.1.4.

Proof. Define δ to be the composite of σ : G→ AG with the projectionAG → (e·k∆+)×.

We assume for the remainder of this subsection that G/∆+ is pro-p, and

find a map σ satisfying Lemma 4.1.3 for this case.

Write P = G/∆+. Note that AG/d(∆+) is an extension of AG/A∆+ (which is iso-

morphic to P , a pro-p group, by Lemma 4.1.2) by A∆+/d(∆+) (which is isomorphic

to k′×, a p′-group, by the discussion above). Hence, as k is still assumed to be finite,

we may apply Sylow’s theorems [9, §1, exercise 11] to find a Sylow pro-p subgroup

L/d(∆+) of AG/d(∆+) which is isomorphic to P .

This information is summarised in the following diagram.

AG

P L

PA∆+

k′×∆+

i(k′×)

k′×

d(∆+)

∆+

1

Lemma 4.1.4. SupposeG/∆+ is pro-p. Then there is a map σ splitting the surjection

πG : AG → G satisfying the hypotheses of Lemma 4.1.3.
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Proof. Consider πG|L : L→ G. Now, ker(πG) = i(k′×), so

ker(πG|L) = i(k′×) ∩ L

= (i(k′×) ∩ A∆+) ∩ L

= i(k′×) ∩ (A∆+ ∩ L)

= i(k′×) ∩ d(∆+) = 1,

so πG|L is injective. Also,

i(k′×) · L = A∆+ · L = AG,

so

G = πG(AG) = πG(i(k′×) · L)

= πG(i(k′×)) · πG(L)

= πG(L)

as πG(i(x)) = πG((x, 1)) = 1 for x ∈ k′×, and hence πG|L is surjective. So πG|L is in

fact an isomorphism L→ G.

Define σ : G → L → AG (i.e. (πG|L)−1 followed by inclusion). By construction,

this σ splits πG. Also, as πG(σ(g)) = πG(d(g)) = g for all g ∈ ∆+, we have that

σ(g)d(g)−1 ∈ kerπG∩L = 1, and so σ(g) = d(g) = (e·g, g) for g ∈ ∆+ as required.

Now we may define δ : G → (e · k∆+)× as in the proof of Lemma 4.1.3, allowing us

to deduce the following theorem, in which we continue to write q : kG → e · kG for

the natural quotient map:

Theorem 4.1.5. Let G be a compact p-adic analytic group with G/∆+ pro-p, and

let k be a finite field. Write N = G/∆+. Let M be a minimal prime of kG,

69



and e ∈ cpik∆+
(M), and suppose that e is centralised by G. Then we can find a

δ : G→ (e · k∆+)× satisfying the conditions of Corollary 3.1.4. In particular:

(i) There exists an isomorphism

Ψ : e · kG→ e · k∆+ ⊗
k
kN.

(ii) There exist a finite field extension k′/k and a positive integer t, and an isomor-

phism

ψ : e · kG→Mt(k
′N).

Furthermore, let A be an ideal of kG with M ⊆ A, so that ψ ◦ q(A) = Mt(a) for some

ideal a of k′N . Then:

(iii) A is prime if and only if a is prime. Also, A is almost (G-)faithful if and only

if a is (N -)faithful.

Proof.

(i) The map δ as defined by Lemmas 4.1.3 and 4.1.4 satisfies the conditions of

Corollary 3.1.4, which gives the isomorphism Ψ : e · kG→ e · k∆+⊗
k
k[[G/∆+]].

(ii) As in Corollary 3.1.4, we may identify e ·k∆+⊗
k
k[[G/∆+]] with Mt(k

′[[G/∆+]])

by appealing to Lemma 1.5.1(iii).

(iii) This is just Corollary 3.2.3.

Proof of Theorem F. This follows from Theorem 4.1.5.
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4.2 Central twists by 2-cocycles, and the general

case

Suppose we are given a ring R, a finite group G, and a fixed crossed product

S = R ∗
〈σ,τ〉

G

as in Notation 1.7.2; and suppose further that we wish to define some new crossed

product, keeping the action the same but changing the twisting, say

S ′ = R ∗
〈σ,τ ′〉

G.

For the rest of this section, until stated otherwise, we will write A = Z(R×).

Lemma 4.2.1. S ′ is well-defined as a ring if and only if there exists α ∈ Z2
σ(G,A)

satisfying τ ′(x, y) = τ(x, y)α(x, y) for all x, y ∈ G.

Proof. Equation (1.7.2), applied to both S and S ′, gives

σ(x)σ(y) = σ(xy)η(x, y) and

σ(x)σ(y) = σ(xy)η′(x, y) for all x, y ∈ G,

where η(x, y) and η′(x, y) are the automorphisms induced by conjugation by τ(x, y)

and τ ′(x, y) respectively. This implies that η = η′. In other words, writing α = τ−1τ ′

pointwise, we see that conjugation by α(x, y) induces the trivial automorphism on R,

and so

α : G×G→ Z(R×) = A,
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and it follows from equation (1.7.3) that, in order for S ′ to be a ring, α must be a

2-cocycle for σ taking values in A. The converse is identical.

Definition 4.2.2. When the crossed product S = R ∗G = R ∗
〈σ,τ〉

G and the central

2-cocycle α are fixed, write the ring S ′ defined above as Sα: we will say that Sα is

the central 2-cocycle twist of S by α with respect to the decomposition S = R ∗
〈σ,τ〉

G,

meaning that

Sα = R ∗
〈σ,τα〉

G.

Sometimes it will not be necessary to specify all of this information in full; we may

simply refer to Sα as a central 2-cocycle twist of S, or similar.

Note that Sα depends not only on the map τ , but also on the choice of basis G for

S = R ∗G.

Remark. Fix a crossed product S = R ∗G, and choose some α ∈ Z2
σ(G,A). Write the

resulting crossed product decompositions as

S =
⊕
g∈G

Rg, Sα =
⊕
g∈G

Rĝ.

We say that S and Sα differ by a diagonal change of basis if, for each g ∈ G, there is

some unit ug ∈ R× such that ĝ = gug. (In particular, if S and Sα differ by a diagonal

change of basis, they are isomorphic.) By [22, exercise 1.1], S and Sα differ by a

diagonal change of basis if and only if α is a 2-coboundary for σ, i.e. there is some

function ϕ : G→ R× with

α(x, y) = ϕ(xy)−1ϕ(x)σ(y)ϕ(y)

for all x, y ∈ G. Hence S and Sα are non-isomorphic only if α has non-trivial coho-

mology class. But we will not develop this idea any further in this thesis.
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Remark. We note that similar twists have been studied by Aljadeff et al., e.g. in [1].

Central 2-cocycle twists will occur naturally in the theory later. For now, we see

where this will be applied:

Definition 4.2.3. [22, Lemma 12.3] Let R be a prime ring. An automorphism

ϕ : R → R is X-inner if there exist nonzero elements a, b, c, d ∈ R such that, for

all x ∈ R,

axb = cxϕd.

(Here xϕ denotes the image of x under ϕ.) Write Xinn(R) to denote the subgroup of

Aut(R) of X-inner automorphisms.

Now let G be a group, and fix a crossed product

S = R ∗G = R ∗
〈σ,τ〉

G.

Write XinnS(R;G) for the normal subgroup of G consisting of elements g ∈ G that

act by X-inner automorphisms on R, i.e.

XinnS(R;G) = σ−1(σ(G) ∩ Xinn(R)).

Theorem 4.2.4. Fix a crossed product S = R ∗ G with R prime, G finite. Then

XinnS(R;G) = XinnSα(R;G) for every α ∈ Z2
σ(G,A). In particular, if XinnS(R;G) = 1,

then Sα is a prime ring for every α ∈ Z2
σ(G,A).

Proof. It is clear from the definition that XinnSα(R;G) depends only on the map σ,

and so XinnSα(R;G) = XinnS(R;G) for all α. A special case of [22, Corollary 12.6]

implies that, if XinnSα(R;G) = 1, then Sα is a prime ring.

This theorem will be important in §7.

73



Now we turn our attention back to the problem of understanding quotients of com-

pleted group algebras.

LetG be a compact p-adic analytic group, M a minimal prime of kG, and e ∈ cpik∆+
(M)

(as in Notation 1.5.2) centralised by G. In this more general case, we may not be

able to find a group homomorphism

δ : G→ (e · k∆+)×

satisfying the hypotheses of Corollary 3.1.4, so we may not be able to find an isomor-

phism

ψ : e · kG→Mt(k
′[[G/∆+]]).

In this case, fix an open normal pro-p subgroup N of G/∆+ (e.g. by taking the normal

core in G of an open uniform pro-p subgroup, as in [9, Theorem 8.32]), and write H

for the preimage of N in G, so that by Theorem 4.1.5 we do get an isomorphism

ψ : e · kH →Mt(k
′N).

Now we will have to rely on the crossed product structure of kG. That is, writing

F = G/H, we can find a crossed product decomposition

kG = kH ∗ F.

In the following discussion, we will construct a related crossed product k′N ∗ F (not

necessarily isomorphic to k′[[G/∆+]]), and show that the isomorphism ψ extends to

an isomorphism

ψ̃ : e · kG→Mt(k
′N ∗ F ).

Studying the structure of this crossed product k′N ∗ F will allow us to understand
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the prime ideals of kG. In fact, we will show that k′N ∗F is a central 2-cocycle twist

of k′[[G/∆+]].

Recall the map δ : H → (e · k∆+)× from Theorem 4.1.5, and continue to write

ε : H → (e · kH)×

h 7→ δ(h)−1h

for all h ∈ H, as in the proof of Theorem 3.1.3.

For the remainder of this section, we fix an element g ∈ G.

FixMg ∈ (e·k∆+)×, an arbitrary lift of the image of g under the mapG→ Inn(e·k∆+),

i.e. any element such that xg = xMg for all x ∈ e · k∆+, and hence (Mg, g) ∈ AG.

Define

g̃ = M−1
g g ∈ (e · kG)× (4.2.1)

– this element will play the role of “ε(g)” when g 6∈ H.

Recall also the isomorphisms

e · kH
Ψ //
oo

Φ

e · k∆+ ⊗
k
kN

of the proof of Theorem 3.1.3.

Conjugation on the right by g̃ is a ring automorphism ϕg ∈ Aut(e·kH), which induces

a ring automorphism

Ψ ◦ ϕg ◦ Φ =: θg ∈ Aut(e · k∆+ ⊗
k
kN).

That is:
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e · kH ϕg // e · kH

Ψ
��

e · k∆+ ⊗
k
kN

Φ

OO

θg
// e · k∆+ ⊗

k
kN

For ease of notation, we will write these maps on the left as before, though note that

e.g. θg1 ◦ θg2(x) = θg2g1(x) for all g1, g2 ∈ G.

Given r ∈ e · k∆+ and h∆+ ∈ N , we wish to calculate θg(r ⊗ h∆+) explicitly.

We begin with a trivial remark:

Lemma 4.2.5. By construction, ϕg(r) = r, and so θg(r ⊗ 1) = r ⊗ 1.

Next, a computational lemma:

Lemma 4.2.6. Suppose N is pro-p and k′× contains no non-trivial pro-p subgroups.

Then δ(h)g = δ(hg) for all h ∈ H.

Proof. Define βg : H → (e · k∆+)× by βg(h) = δ(hg)−1δ(h)g. We aim to show that

βg(h) = 1 for all h.

For any r ∈ e · k∆+, we have that

rδ(h
g) = rh

g

= ((rg
−1

)h)g

= ((rg
−1

)δ(h))g = rδ(h)g ,

and so rβg(h) = r, i.e. βg(h) is in the centre of (e · k∆+)×. So βg is a map from H to

k′×.

Let h1, h2 ∈ H. Since βg(h1) = δ(hg1)−1δ(h1)g is central in (e · k∆+)×, in particular it
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centralises δ(hg2)−1, and so

βg(h1h2) = δ((h1h2)g)−1δ(h1h2)g

= δ(hg2)−1δ(hg1)−1δ(h1)gδ(h2)g

= δ(hg2)−1 δ(hg1)−1δ(h1)g δ(h2)g

= δ(hg1)−1δ(h1)g δ(hg2)−1 δ(h2)g

= βg(h1)βg(h2),

so βg is a group homomorphism H → k′×. Furthermore, when h ∈ ∆+,

βg(h) = δ(hg)−1δ(h)g

= (e · hg)−1(e · h)g = 1.

So ∆+ ≤ ker βg, and so βg in fact descends to a homomorphism from N (a pro-p

group) to k′× (containing no non-trivial pro-p subgroups), and so must be trivial.

Continue to write ε(h) = δ(h)−1h for all h ∈ H. Then, finally, we can conclude:

Corollary 4.2.7. SupposeN is pro-p and k′× contains no non-trivial pro-p subgroups.

Then ε(h)g̃ = ε(hg) for all h ∈ H.

Proof. We have

ε(h)g̃ = ε(h)g as ε(h) centralises Mg

= (δ(h)g)−1hg

= (δ(hg))−1hg by Lemma 4.2.6

= ε(hg),

as required.
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Now we can calculate the action of θg on e · k∆+ ⊗
k
kN :

Lemma 4.2.8. Given r ∈ e · k∆+ and h∆+ ∈ N , with N pro-p and k′× containing

no non-trivial pro-p subgroups as above, we have

θg(r ⊗ h∆+) = r ⊗ (h∆+)g∆
+

.

Proof.

θg(r ⊗ h∆+) = Ψ(ϕg(Φ(r ⊗ h∆+)))

= Ψ(ϕg(rε(h))) by definition

= Ψ(rg̃ε(h)g̃)

= Ψ(rε(hg)) by Corollary 4.2.7 and Lemma 4.2.5

= Ψ(Φ(r ⊗ hg∆+)) by definition

= r ⊗ hg∆+ by Theorem 3.1.3

= r ⊗ (h∆+)g∆
+

.

We will need one final definition.

Definition 4.2.9. Let G be a compact p-adic analytic group, H an open normal

subgroup, F = G/H, and I a G-stable ideal of kH. Suppose we are given elements

xi ∈ (kG/IkG)× such that

kG/IkG =
m⊕
i=1

xi(kH/I)

is a decomposition of kG/IkG as a kH/I-module, or equivalently,

F := {x1, . . . , xm} ⊆ (kG/IkG)×
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is a basis for a crossed product decomposition kG/IkG = kH/I ∗ F . We will say

that this decomposition is standard if each xi is the image of some gi ∈ G under the

natural map G→ (kG/IkG)×.

Now finally we can prove the main theorem of this section.

Let G be a compact p-adic analytic group and H an open normal subgroup containing

∆+ with H/∆+ a pro-p group. Suppose k is a finite field of characteristic p. Fix a

minimal prime M of kH, and e ∈ cpik∆+
(M), and suppose that e is centralised by G.

As H satisfies the conditions of Theorem 4.1.5, there exist a finite field extension k′/k

and a positive integer t, and isomorphisms

Ψ : e · kH → e · k∆+ ⊗
k′
k′N,

ψ : e · kH →Mt

(
k′[[H/∆+]]

)
.

(Note that, here, we have identified the two rings e · k∆+⊗
k
kN and e · k∆+⊗

k′
k′N as

in Lemma 1.5.1(iii).)

Fix a crossed product decomposition

k′[[G/∆+]] = k′[[H/∆+]] ∗
〈σ,τ〉

(G/H) (‡)

which is standard in the sense of Definition 4.2.9.

Theorem 4.2.10. Notation as above. Then there exists

α ∈ Z2
σ

(
G/H, Z(k′[[H/∆+]]×)

)
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such that Ψ extends to an isomorphism

Ψ̃ : e · kG→ e · k∆+ ⊗
k′

(
k′[[G/∆+]]

)
α
,

where the 2-cocycle twist (k′[[G/∆+]])α, as defined in Definition 4.2.2, is taken with

respect to the standard crossed product decomposition (‡) above.

Hence ψ also extends to an isomorphism

ψ̃ : e · kG→Mt

((
k′[[G/∆+]]

)
α

)
.

Proof. We know that e · k∆+ ∼= Mt(k
′) for some t and k′ by Lemma 1.5.1, and so

e · k∆+ contains a set {eij} of t2 matrix units. Set

ZH := Ze·kH

(
{eij}

)
⊆ e · kH,

the centraliser of all of these matrix units, and likewise ZG ⊆ e·kG and Z∆+ ⊆ e·k∆+.

Then the statement and proof of [21, 6.1.5] show that

e · kH ∼= e · k∆+ ⊗
Z∆+

ZH

and

e · kG ∼= e · k∆+ ⊗
Z∆+

ZG.

Since e·k∆+ ∼= Mt(k
′), it is clear that Z∆+

∼= k′, the diagonal copy of k′ inside Mt(k
′).

Using the isomorphism Ψ of Theorem 4.1.5, we can also understand the structure of

ZH :

Ψ(ZH) = Z∆+ ⊗
k
k[[H/∆+]] ∼= k′[[H/∆+]],
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so Ψ restricts to an explicit isomorphism ZH → k′[[H/∆+]]. Now we would like to

understand the structure of ZG.

As F := G/H is finite, we may write {x1, . . . , xn} for the basis of the crossed product

(‡). This will be a set of representatives in G of F = {x1H, . . . , xnH}.

For each xi, form x̃i ∈ Z×G as in equation (4.2.1). Then e · kG is a free e · kH-module

of rank n: e · kG can be written as the internal direct sum

e · kG =
n⊕
i=1

x̃i(e · kH).

Intersecting both sides of this equation with ZG gives

ZG =
n⊕
i=1

x̃iZH ,

showing that ZG is a crossed product ZH∗F , and is therefore isomorphic to k′[[H/∆+]]∗F .

Lemma 4.2.8 may now be restated to say that this k′[[H/∆+]] ∗ F is just a central

2-cocycle twist of the decomposition (‡) of k′[[G/∆+]]. This is the map Ψ̃, and the

map ψ̃ then also follows from Lemma 1.5.1(iii).

Further, keeping the above notation, let A be an ideal of kH with M ⊆ A. Continuing

as before to write q : kG→ e · kG for the natural quotient map, we see by Theorem

4.1.5 that ψ ◦ q(A) = Mt(a) for some ideal a of k′[[H/∆+]].

Corollary 4.2.11. The following are equivalent:

(i) A is G-stable as an ideal of kH.

(ii) a is (G/∆+)-stable as an ideal of k′[[G/∆+]].

(iii) a is (G/∆+)-stable as an ideal of (k′[[G/∆+]])α.
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Moreover, when these conditions hold, we have

ψ̃ ◦ q(AkG) = Mt

(
a
(
k′[[G/∆+]]

)
α

)
.

Proof. The equivalence of statements (ii) and (iii) is clear since, by definition, the

conjugation action of G/∆+ on the ring k′[[G/∆+]] is the same as the conjugation

action of G/∆+ on the ring (k′[[G/∆+]])α. The equivalence of (i) and (ii) follows

easily from Lemma 4.2.8. Then

ψ̃ ◦ q(AkG) =
(
ψ̃ ◦ q(A)

)
·
(
ψ̃ ◦ q(kG)

)
= Mt(a) ·Mt

((
k′[[G/∆+]]

)
α

)
= Mt

(
a
(
k′[[G/∆+]]

)
α

)
.

Proof of Theorem G. This follows from Theorem 4.2.10.

Proof of Theorem H. This follows from Corollaries 3.2.3 and 4.2.11.

4.3 Matrix units and the Peirce decomposition

From section 3.1 onwards, we often stipulated a stronger condition than in Lemma

1.5.1, namely that the conjugation action of G on kG should fix the idempotent e

(in Notation 1.5.2). In general, e will have some non-trivial (but finite) G-orbit, so it

will only make sense to consider f · kG, where f = e|G.

The following result already gives us a lot of information:

Lemma 4.3.1. [21, 6.1.6] Let R be a ring, and let 1 = e1 + e2 + · · · + en be a

decomposition of 1 into a sum of orthogonal idempotents. Let G be a subgroup of the

group of units of R, and assume that G permutes the set {e1, e2, . . . , en} transitively
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by conjugation. Then R ∼= Mn(S), where S is the ring S = e1Re1.

For instance, if M is a faithful minimal prime of kG, e ∈ cpik∆+
(M) and f = e|G,

this lemma implies that

f · kG ∼= Mn(e · kG · e),

and it is easy to show that

e · kG · e = e · kG1

where G1 is the closed subgroup of elements of G (here identified with the natural

subgroup of (f · kG)×) that fix e under conjugation.

Proof of Theorem I. This follows from Lemma 4.3.1.

Now, if P is any ideal containing M , and the image of f ·P in Mn(e ·kG1) is Mn(e ·Q)

for some ideal Q (with Q containing JkG, and Q containing 1− e), it is easy to see

that:

Lemma 4.3.2. P is prime if and only if Q is prime.

Proof. By Lemma 1.6.3, it suffices to show that f · P ∼= Mn(e · Q) is prime if and

only if e ·Q is prime; but this is true because Morita equivalence preserves primality

(Lemma 1.6.5).

With a little more care, it is also possible to use the proof of Lemma 4.3.1 to show

that

P † =
⋂
g∈G

(Q†)g.

(See Lemmas 4.3.5 and 4.3.6 for a proof of this statement.)

Later, we will show that certain prime ideals P of kG are controlled by certain closed
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normal subgroups H containing ∆+. By Lemma 1.6.3, it clearly suffices to show that

(f · P ∩ f · kH)f · kG = f · P .

If now f = e|H , we may apply Lemma 4.3.1 to reduce to the case when f = e, and

then apply the isomorphism ψ of Theorem 4.2.10 and Lemma 1.6.4 to reduce the

problem to a simpler one.

However, Lemma 4.3.1 is not always precise enough for our purposes. It may be the

case that f = e|G 6= e|H , i.e. the G-orbit of e splits into more than one H-orbit: then

f · kH is not a full matrix ring, but a direct sum

f · kH =
(
f

(1)
H · kH

)
⊕ · · · ⊕

(
f

(s)
H · kH

)

of several matrix rings (which may be non-isomorphic), and the same tools become

messier to apply.

For this reason, it will be useful to keep track of the isomorphism in Lemma 4.3.1

more carefully, and so we will develop a more precise set of tools for handling this

isomorphism.

Let R be a ring, and fix a subgroup G ≤ R×. Suppose we have a G-orbit of mutually

orthogonal idempotents e1, . . . , er ∈ R whose sum is 1. Recall the Peirce decomposi-

tion of R with respect to this set of idempotents,

R =
r⊕

i,j=1

Rij =



R11 R12 . . . R1r

R21 R22 . . . R2r

...
...

. . .
...

Rr1 Rr2 . . . Rrr


,

where Rij := eiRej.
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Remark. Each Rii is naturally a ring with identity 1Rii = ei under the multiplica-

tion inherited from R. Each Rij is an (Rii, Rjj)-bimodule, and the restriction of

the multiplication map R ⊗
R
R → R gives a homomorphism of (Rii, Rkk)-bimodules

Rij ⊗
Rjj

Rjk → Rik for all i, j, k.

Let A be any ideal of R, and write Aij = A ∩Rij = eiAej.

Lemma 4.3.3. AijRkl = δjkAil (where δjk is the Kronecker delta symbol).

Proof. If j 6= k, it is clear from the definitions that AijRkl = 0.

Suppose j = k, and let g ∈ G be such that ekg = gel, so that 0 6= ekgel ∈ Rkl. Then,

given any a ∈ A, we can write

eiael = eiag
−1gel = (eiag

−1ek)(ekgel),

showing that Ail ⊆ AikRkl. The reverse inclusion is trivial.

In this section, we aim to study the relationship between an ideal A � R and the

various ideals Aii � Rii. To that end, write for convenience Si := Rii and Bi := Aii

from now on. Also, we have fixed the group G inside R×: its analogue inside S×i is

eiGei, which we note is isomorphic to Gi := CG(ei) in the natural way.

Recall from Definition 1.6.2 that, if I is an ideal of kG, we define

I† = (I + 1) ∩G = ker(G→ (kG/I)×).

Below is the appropriate analogue for the current situation.

Definition 4.3.4. With notation as above,

A† = (A+ 1R) ∩G = ker(G→ (R/A)×),
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B†i = (Bi + 1Si) ∩Gi = ker(Gi → (Si/Bi)
×).

The following lemma relates these groups.

Lemma 4.3.5.

(i) If A 6= R, then A† ≤
⋂r
i=1 Gi.

(ii) A† =
⋂r
i=1 B

†
i .

(iii) The {B†i } are a G-orbit under conjugation.

Proof.

(i) Suppose not: then there exist some i 6= j and some g ∈ A† with eig = gej, so

that eigei = 0. Then

g − 1 ∈ A =⇒ ei(g − 1)ei ∈ A =⇒ ei ∈ A,

but then by conjugating by elements of G we see that ek ∈ A for all k, and so

1 =
∑

k ek ∈ A, so A = R, which is a contradiction.

(ii) ≤ Fix i. If g− 1 ∈ A, then g ∈ Gi by the previous lemma, so ei(g− 1)ei ∈ Bi.

≥ Let g ∈
⋂
iB
†
i , so that eigej = geiej = 0 ∈ A for all i 6= j, and ei(g−1)ei ∈ Bi

⊆ A for all i. Then g − 1 =
∑

i 6=j eigej +
∑

i ei(g − 1)ei ∈ A.

(iii) A is G-stable, so if egi = ej then Bg
i = (eiAei)

g = ejAej = Bj. Also, Gg
i = Gj.

It follows that (B†i )
g = B†j .

We finish by applying this to the problem mentioned at the beginning of this section.

Recall the definition of control from Definition 1.6.1.

Lemma 4.3.6. Let G be a compact p-adic analytic group, H a closed normal sub-

group containing ∆+, and k a field of characteristic p. Let P be an ideal of kG
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containing a prime ideal.

Write e ∈ cpik∆+
(P ), f = e|G, where the G-orbit of e = e1 is {e1, . . . , er}. For each

1 ≤ i ≤ r, write Gi for the stabiliser in G of ei (so that ei · kG · ei = ei · kGi),

and similarly Hi = H ∩ Gi, and set Qi equal to the preimage in kGi of the ideal

ei · P · ei � ei · kGi.

Then

(i) P is controlled by H if and only if each Qi is controlled by Hi,

(ii) P † =
⋂r
i=1Q

†
i .

Proof. Take R to be f · kG, and identify G with its image in (f · kG)×. Let A be the

ideal f · P , and Bi the ideal ei ·Qi.

Write D = f ·kH and Di = ei·kHi. By Lemma 1.6.3, it suffices to show: (A∩D)R = A

if and only if (Bi ∩Di)Si = Bi for each i.

⇒ Take the equation (A ∩D)R = A, and intersect it with Si.

⇐ Note that
⊕

iBi =
⊕

i(Bi ∩ Di)Si by assumption, and we have automatically

that (A ∩D)R ⊆ A. Since
⊕

i Si ⊆ R, we have that

⊕
i

Bi =
⊕
i

(Bi ∩Di)Si ⊆ (A ∩D)R ⊆ A.

Hence (⊕
i

Bi

)
R ⊆ (A ∩D)R ⊆ AR = A,

i.e. (⊕
i

Aii

)(⊕
j,k

Rjk

)
⊆ (A ∩D)R ⊆ A.
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But the left hand side can easily be computed by Lemma 4.3.3 and is equal to

⊕
i,k

Aik

– that is, A.

This shows that P is controlled by H, completing the proof of (i).

Comparing Definitions 1.6.2 and 4.3.4, we can see that P † = A† and Q†i = B†i .

Statement (ii) is now a direct consequence of Lemma 4.3.5(ii).
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Chapter 5

p-valuations and crossed products

5.1 Separating a free abelian quotient

Let G be a p-valuable group with p-valuation ω, and let σ ∈ Aut(G). In this section

and the next, we seek to establish conditions under which a given automorphism σ of

G will preserve the “dominant” part of certain elements x ∈ G (with respect to ω).

That is, we are looking for a condition under which

grω(σ(x)) = grω(x).

Clearly it is necessary and sufficient that the following holds:

ω(σ(x)x−1) > ω(x). (5.1.1)

Our aim is to invoke the following technical result.

Theorem 5.1.1. Let G be a p-valuable group, and let L be a proper closed isolated

orbital (hence normal) subgroup containing [G,G], so that we have an isomorphism
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ϕ : G/L→ Zdp for some d ≥ 1. Write q : G→ G/L for the natural quotient map.

Choose a Zp-basis {e1, . . . , ed} for Zdp. For each 1 ≤ i ≤ d, fix an element gi ∈ G

with ϕ ◦ q(gi) = ei. Fix an automorphism σ of G preserving L, so that σ induces an

automorphism σ of G/L, and hence an automorphism σ̂ = ϕ ◦ σ ◦ϕ−1 of Zdp. Let Mσ

be the matrix of σ̂ with respect to the basis {e1, . . . , ed}.

Suppose there exists some p-valuation ω on G with the following properties:

(i) (5.1.1) holds for all x ∈ {g1, . . . , gd},

(ii) ω(g1) = · · · = ω(gd)(= t, say),

(iii) ω(`) > t for all ` ∈ L.

Then Mσ − 1 ∈ pMd(Zp).

Before proving this, we will define a particular p-valuation on abelian p-valuable

groups.

Definition 5.1.2. Let A be a free abelian pro-p group of rank d > 0 (here written

multiplicatively). Choose a real number t > (p − 1)−1. Then the (t, p)-filtration on

A is the function ω : A→ R ∪ {∞} defined by

ω(x) = t+ n,

where n is the non-negative integer such that x ∈ Ap
n \ Apn−1

. (By convention,

ω(1) =∞.)

Lemma 5.1.3. Let A and t be as in the above definition.

(i) The (t, p)-filtration ω is a p-valuation on A.

(ii) Suppose we are given an ordered basis {a1, . . . , ad} for A, and a p-valuation α

on A satisfying α(a1) = · · · = α(ad) = t. Then α is the (t, p)-filtration on A.
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(iii) The (t, p)-filtration ω is completely invariant under automorphisms of A, i.e.

the subgroups Aω,λ and Aω,λ+ are characteristic in A.

Proof.

(i) This is a trivial check from the definition [13, III, 2.1.2].

(ii) By [13, III, 2.2.4], we see that

α(aλ1
1 . . . aλdd ) = t+ inf

1≤i≤d
{vp(λi)},

which is precisely the (t, p)-filtration.

(iii) The subgroups Ap
n

are clearly characteristic in A.

Remark. The (t, p)-filtration as defined above is equivalent to the definition given

in [13, II, 3.2.1] for free abelian pro-p groups of finite rank.

Remark. Given an arbitrary p-valuable group G with p-valuation ω, and a closed

normal subgroup K such that G/K is torsion-free, we may define the quotient p-

valuation Ω induced by ω on G/K as follows:

Ω(gK) = sup
k∈K
{ω(gk)}.

This is defined by Lazard, but the definition is spread across several results, so we

collate them here for convenience. The definition in the case of filtered modules

is [13, I, 2.1.7], and is modified to the case of filtered groups in [13, the remark after

II, 1.1.4.1]. The specialisation from filtered groups to p-saturable groups is done

in [13, III, 3.3.2.4], where it is proved that Ω is indeed still a p-valuation on G/K;

and the general case is stated in [13, III, 3.1.7.6], and eventually proved in [13, IV,

3.4.2].
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With this in mind, we remark the following: suppose ω satisfies hypothesis (iii) of

Theorem 5.1.1. Then hypothesis (ii) is equivalent to the statement that the quotient

filtration induced by ω on G/L is actually the (t, p)-filtration on G/L.

Proof of Theorem 5.1.1. Define the function Ω : Zdp → R ∪ {∞} by

Ω ◦ ϕ(gL) = sup
`∈L
{ω(g`)}.

By the remark above, Ω is in fact a p-valuation.

By assumption (iii), we see that, for each 1 ≤ i ≤ d and any ` ∈ L, we have

ω(gi) = ω(gi`), so that

Ω(ei) = Ω ◦ ϕ(giL) = sup
`∈L
{ω(gi`)} = ω(gi),

so by assumption (ii), Ω(ei) = t. Hence, by Lemma 5.1.3(ii), Ω must be the (t, p)-

filtration on Zdp. Now, by assumption (i), we have

Ω(σ̂(x)− x) > t

for all x ∈ {e1, . . . , ed}, and hence, as Ω− t takes integer values (by Definition 5.1.2),

Ω(σ̂(x)− x) ≥ t+ 1,

and so σ̂(x)−x ∈ pZdp for each x ∈ {e1, . . . , ed}, which is what we wanted to prove.

5.2 Constructing p-valuations

In this subsection, we address the issue of hypotheses (ii) and (iii) of Theorem 5.1.1,

by constructing a p-valuation on an arbitrary nilpotent p-valuable group satisfying
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certain nice technical properties. We will not address the case when the group in

question is abelian.

Fix some n ≥ 2, and write U := U(GLn(Zp)) for the closed subgroup of GLn(Zp)

consisting of unipotent upper triangular matrices, i.e.

U =



1 Zp Zp . . . Zp

0 1 Zp . . . Zp

0 0 1 . . . Zp
...

...
...

. . .
...

0 0 0 . . . 1


,

and write Γ(k) := Γ(k,GLn(Zp)) for the kth congruence subgroup of GLn(Zp), i.e.

Γ(k) = {X ∈ GLn(Zp)|X ≡ 1 mod pk}.

Write ε = 0 if p 6= 2 and ε = 1 if p = 2.

Lemma 5.2.1. The group Γ(1 + ε) has p-valuation ω defined by

ω(x) = k,

where k is the positive integer such that x ∈ Γ(k) \ Γ(k + 1).

Proof. This follows from [26, Proposition 2.1] and [9, Theorem 5.2].

Recall from Lemma 2.1.2 that, if G is a non-abelian nilpotent p-valuable group, then

there is some n ≥ 2 for which there is a continuous embedding G → Un. Recall also

from Corollary 2.3.6 the isolated lower central series of a nilpotent p-valuable group

G: if (γi) is the abstract lower central series of G, then defining Gi := iG(γi), we

have that (Gi) is a strongly central series for G consisting of isolated normal closed
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subgroups. We will also write G′ = G2.

Note that

U2 =



1 0 Zp Zp . . . Zp

0 1 0 Zp . . . Zp

0 0 1 0 . . . Zp

0 0 0 1 . . . Zp
...

...
...

...
. . .

...

0 0 0 0 . . . 1


, U3 =



1 0 0 Zp . . . Zp

0 1 0 0 . . . Zp

0 0 1 0 . . . Zp

0 0 0 1 . . . Zp
...

...
...

...
. . .

...

0 0 0 0 . . . 1


, . . .

– that is, for 2 ≤ k ≤ n, Uk is obtained from U by setting the entries in the first k− 1

superdiagonals equal to zero.

Write P = diag(1, p, p2, . . . , pn−1) ∈ GLn(Qp). Note that P−nUP n ≤ Γ(n).

Define a sequence of p-valuations on U as follows. Let ω be the p-valuation on Γ(1+ε)

defined above. Then, for any X ∈ U , and for all r > 0, define

ωr(X) = ω(P−1−ε−rXP 1+ε+r),

so that ωr+1(X) = ωr(P
−1XP ).

Lemma 5.2.2. Fix some Y ∈ Uk \ Uk+1 (so, in particular, Y 6= 1). Then we have

ωr+1(Y ) ≥ ωr(Y ) + k for all r; moreover, there exists some integer N such that, for

all r > N , we have ωr+1(Y ) = ωr(Y ) + k.

Proof. Write

Z := P−1−εY P 1+ε = 1 + Sk + Sk+1 + · · ·+ Sn−1,

where each matrix S` has (i, j)-entry equal to zero for j − i 6= `. (That is, S` is the

`-th superdiagonal of Z.) By assumption, Y ∈ Uk \ Uk+1, so Sk 6= 0.
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It is easy to see that

P−rZP r = 1 + prkSk + pr(k+1)Sk+1 + · · ·+ pr(n−1)Sn−1.

For any matrix A = (aij) ∈Mn(Zp), define v(A) = inf{vp(aij)}. Then

ωr+1(Y ) = inf{v(p(r+1)`S`)}

= inf{v(S`) + (r + 1)`}

≥ inf{v(S`) + r`}+ k

= inf{v(pr`S`)}+ k

= ωr(Y ) + k,

where all of the above infima are taken over the range k ≤ ` ≤ n− 1.

We now need to show that this inequality becomes an equality for sufficiently large

r: that is, there exists some N such that, for r > N , we have

inf
k≤`≤n−1

{v(S`) + (r + 1)`} = inf
k≤`≤n−1

{v(S`) + r`}+ k. (5.2.1)

It will be enough to show that, for all r > N , we have

inf
k≤`≤n−1

{v(S`) + r`} = v(Sk) + rk, (5.2.2)

i.e. this infimum is attained when ` = k for all r > N ; or equivalently that

v(Sk) + rk ≤ v(S`) + r` (5.2.3)

for all k ≤ ` ≤ n − 1: indeed, substituting (5.2.2) for both the left- and right-hand

sides of (5.2.1) shows clearly that they are equal.
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Rearranging the inequality (5.2.3), we get

r(`− k) ≥ v(Sk)− v(S`)

for all k ≤ ` ≤ n− 1, and so we see that it suffices to take N > v(Sk).

Finally, we derive the following result.

Lemma 5.2.3. LetG be a non-abelian nilpotent p-valuable group. Choose an ordered

basis {gd+1, . . . , ge} for G′, and extend it to an ordered basis {g1, . . . , ge} for G by

Lemma 1.3.2. To each p-valuation α, assign the real number

R(α) = inf
d+1≤i≤e

{α(gi)} − inf
1≤i≤d

{α(gi)}.

Then there exists some p-valuation α for G with R(α) > 0.

Remark. This ensures that there is some 1 ≤ i ≤ d with α(gi) < α(x) for every

x ∈ G′.

Proof. First, choose an embedding ψ : G → U . Let k be the greatest integer such

that ψ(G) ≤ Uk: then ψ(G′) ≤ (Uk)′ ≤ Uk+1. Hence we must have some 1 ≤ i0 ≤ d

such that ψ(gi0) ∈ Uk \ Uk+1, and for each d+ 1 ≤ i ≤ e we must have ψ(gi) ∈ Uk+1.

Fix i0 as above, and for any p-valuation α and any d− 1 ≤ i ≤ e, write

Ri
0(α) := α(gi)− α(gi0),

so that

R(α) ≥ inf
d+1≤i≤e

{Ri
0(α)},

and so it will suffice to find α such that Ri
0(α) > 0 for each d+ 1 ≤ i ≤ e.
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Now fix some d+ 1 ≤ i ≤ e, and write Y = ψ(gi0) and X = ψ(gi). By Lemma 5.2.2,

there is some large Ni such that the following hold for all r > Ni:

ωr+1(Y ) = ωr(Y ) + k,

ωr+1(X) ≥ ωr(X) + k + 1.

Subtracting, we get

ωr+1(X)− ωr+1(Y ) ≥ ωr(X)− ωr(Y ) + 1.

In other words, if we set αr = ωr ◦ ψ for all r > Ni, then

Ri
0(αr+1) > Ri

0(αr).

Now set N = supd+1≤i≤e{Ni}. Then, for all d+ 1 ≤ i ≤ e, the sequence (Ri
0(αr))r>N

is an increasing sequence of integers; hence they must eventually all be positive.

Now we prove a general theorem about “lifting” p-valuations from torsion-free quo-

tients.

Theorem 5.2.4. Let G be a p-valuable group, and N a closed isolated orbital (hence

normal) subgroup of G. Suppose we are given two functions

α, β : G→ R ∪ {∞},

such that α is a p-valuation on G, and β factors through a p-valuation on G/N , i.e.

β : G/N → R ∪ {∞}.

Then ω = inf{α, β} is a p-valuation on G.
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Proof. α and β are both filtrations on G (in the sense of [13, II, 1.1.1]), and so

by [13, II, 1.2.10], ω is also a filtration. Following [13, III, 2.1.2], for ω to be a

p-valuation, we need to check the following three conditions:

(i) ω(x) <∞ for all x ∈ G, x 6= 1.

This follows from the fact that α is a p-valuation, and hence α(x) < ∞ for all

x ∈ G, x 6= 1.

(ii) ω(x) > (p− 1)−1 for all x ∈ G.

This follows from the fact that α(x) > (p − 1)−1 and β(x) > (p − 1)−1 for all

x ∈ G by definition.

(iii) ω(xp) = ω(x) + 1 for all x ∈ G.

Take any x ∈ G. As α is a p-valuation, we have by definition that α(xp) = α(x)+1.

If x ∈ N , this alone is enough to establish the condition, as ω|N = α|N (since

β(x) =∞).

Suppose instead that x ∈ G \N . Then, as N is assumed isolated orbital in G,

we also have xp ∈ G \N , so by definition of β we have

β(xp) = β((xN)p) = β(xN) + 1 = β(x) + 1,

with the middle equality coming from the fact that β is a p-valuation. Now it

is clear that ω(xp) = ω(x) + 1 by definition of ω.

Definition 5.2.5. Let G be a p-valuable group, and suppose we have a proper closed

isolated normal subgroup L containing G′. Choose an ordered basis {gd+1, . . . , ge} for

L, and extend it to an ordered basis {g1, . . . , ge} for G by Lemma 1.3.2. We will say

that ω satisfies property (AL) if it satisfies hypotheses (ii) and (iii) of Theorem 5.1.1,
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i.e.

and, for all ` ∈ L,

ω(g1) = · · · = ω(gd),

ω(g1) < ω(`).

 (AL)

Corollary 5.2.6. Let G be a nilpotent p-valuable group, and suppose we have a

proper closed isolated normal subgroup L containing the isolated derived subgroup

G′. Then there exists some p-valuation ω for G satisfying (AL).

Proof. Let α1 be a p-valuation for G satisfying R(α1) > 0 as in Lemma 5.2.3. Take

an ordered basis {gd+1, . . . , ge} for L and extend it to an ordered basis {g1, . . . , ge}

for G by Lemma 1.3.2, as in Definition 5.2.5. Fix two numbers t1 and t2 satisfying

(p− 1)−1 < t2 < t1 ≤ inf
1≤i≤e

α(gi).

Applying Theorem 5.2.4 with N = G′ and β1 the (t1, p)-filtration on G/G′, we see

that α2 = inf{α1, β1} is a p-valuation for G, and by construction α2 satisfies (AG′).

Now let β2 be the (t2, p)-filtration on G/L, and apply Theorem 5.2.4 again to see that

ω = inf{α2, β2} is a p-valuation for G and satisfies (AL).

Remark. Suppose that L is characteristic. If ω satisfies (AL) as above, write t := ω(g1).

Then, for any automorphism σ of G and any 1 ≤ i ≤ d, we have

ω(σ(gi)) = t.

This follows from Lemma 5.1.3(iii). Indeed, by construction, we have Gt = G, and

Gt+ = Gp · L, an open normal subgroup; and since L is characteristic, Gt+ is charac-

teristic.
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5.3 Invariance under the action of a crossed pro-

duct

Definition 5.3.1. Let R be a ring, and fix a subgroup G ≤ R×; let F be a group.

Fix a crossed product

S = R ∗
〈σ,τ〉

F.

Consider the following properties that this crossed product may satisfy:

The image σ(F ) normalises G, i.e. xσ(f) ∈ G for all x ∈ G, f ∈ F . (NG)

The image τ(F, F ) normalises G. (N′G)

The image τ(F, F ) is a subset of G. (PG)

In the case when G is p-valuable, consider the set of p-valuations of G. Then Aut(G)

acts on this set as follows: given an automorphism ϕ of G and a p-valuation ω of G,

we may define a p-valuation ϕ · ω on G by setting, for all x ∈ G,

(ϕ · ω)(x) = ω(xϕ).

Remark. We have written ϕ on the left for ease of notation, but in fact this is a right

action: given ϕ, ψ, we have (ψ · (ϕ · ω))(x) = (ϕ · ω)(xψ) = ω((xψ)ϕ).

When S satisfies (N′G), we get a map ρ : τ(F, F )→ Aut(G) (with elements of τ(F, F )

acting by conjugation), so it will make sense to consider the following property:

Every p-valuation ω of G is invariant under elements of τ(F, F ). (QG)

Lemma 5.3.2. In the notation above:
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(i) If S satisfies (NG), then S satisfies (N′G).

(ii) If S satisfies (PG), then S satisfies (N′G).

(iii) If S satisfies (PG), then S satisfies (QG).

Proof.

(i) Note that ρ ◦ τ(x, y) = σ(xy)−1σ(x)σ(y).

(ii) Obvious.

(iii) By (ii), we see that S satisfies (N′G), so it makes sense to consider (QG).

Let ω be a p-valuation of G, and take t ∈ τ(F, F ). As S satisfies (PG), we

actually have t ∈ G. Then, for any x ∈ G, we have

(t · ω)(x) = ω(xt)

= ω(t−1xt)

= ω(x · [x, t])

≥ min{ω(x), ω([x, t])} = ω(x),

and so (by symmetry) ω(t−1xt) = ω(x).

Definition 5.3.3. Recall, from Definition 4.2.2, that if we have a fixed crossed prod-

uct

S = R ∗
〈σ,τ〉

F (5.3.1)

and a 2-cocycle

α ∈ Z2
σ(F,Z(R×)),
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then we may define the ring

Sα = R ∗
〈σ,τα〉

F,

the 2-cocycle twist (of R, by α, with respect to the decomposition (5.3.1)).

Lemma 5.3.4. Continuing with the notation above,

(i) S satisfies (NG) if and only if Sα satisfies (NG).

(ii) S satisfies (QG) if and only if Sα satisfies (QG).

Proof.

(i) Trivial from Definitions 5.3.1 and 5.3.3.

(ii) As α(F, F ) ⊆ Z(R)×, conjugation by elements of α(F, F ) is the identity auto-

morphism on G.

These properties will be interesting to us later as they will allow us to invoke the

following lemma:

Lemma 5.3.5. If S satisfies (NG), then, given any g ∈ F and p-valuation ω on G,

the function g · ω given by

(g · ω)(x) = ω(xσ(g))

is again a p-valuation. If, further, S satisfies (QG), then this is a group action of F

on the set of p-valuations of G.

Proof. If x ∈ G, then xσ(g) ∈ G because S satisfies (NG), so it makes sense to consider

ω(xσ(g)). The definition above does indeed give a group action when S satisfies (QG),
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as, for all g, h ∈ F ,

(g · (h · ω))(x) = h · ω(xσ(g))

= ω(xσ(g)σ(h))

= ω(xσ(gh)τ(g,h))

= ω(xσ(gh)) by (QG)

= (gh · ω)(x).

The following lemma will finally allow us to prove the existence of a p-valuation

sufficiently “nice” for our purposes.

Lemma 5.3.6. Suppose S satisfies (NG) and (QG), so that σ induces an action of

F on the set of p-valuations as in the above lemma. Let ω be a p-valuation. If the

F -orbit of ω is finite, then ω′(x) = infg∈F (g ·ω)(x) defines an F -invariant p-valuation.

Furthermore, if L is a closed isolated characteristic subgroup of G containing G′, and

ω satisfies (AL) (as in Definition 5.2.5), then ω′ satisfies (AL).

Proof. The function ω′ satisfies condition [13, III, 2.1.2.2], since the F -orbit of ω is

finite, and is hence a p-valuation that is F -stable by the remark in [13, III, 2.1.2].

Suppose ω satisfies (AL). That is, for some t > (p−1)−1, ω induces the (t, p)-filtration

on G/L, and ω(`) > t for all ` ∈ L. But, given any g ∈ F , clearly g · ω still induces

the (t, p)-filtration on G/L by Lemma 5.1.3(iii), and (g · ω)(`) = ω(`σ(g)) > t, since

`σ(g) ∈ L as L is characteristic. Taking the infimum over the finitely many distinct

g · ω, g ∈ F , shows that ω′ also satisfies (AL).

Definition 5.3.7. Let G be an arbitrary compact p-adic analytic group with ∆+ = 1,

H an open normal subgroup of G, F = G/H, and P a faithful G-stable ideal of kH.
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Recall from Definition 4.2.9 that the crossed product decomposition

kG/PkG = kH/P ∗
〈σ,τ〉

F

is standard if the basis F is a subset of the image of the map

G ↪→ (kG/PkG)×.

Lemma 5.3.8. Suppose that kG/PkG = kH/P ∗
〈σ,τ〉

F is a standard crossed product

decomposition. Take any α ∈ Z2
σ(F,Z((kH/P )×)), and form the central 2-cocycle

twist (kG/PkG)α (Definition 4.2.2) with respect to this decomposition. Consider H

as a subgroup of (kH/P )×: then conjugation by elements of G inside ((kG/PkG)α)×

induces a group action of F on the set of p-valuations of H, as in Lemma 5.3.5.

Remark. As the notation suggests, this lemma simply says that the action of F on

H, via σ, is unchanged after applying (−)α.

Proof. As the decomposition is standard, kG/PkG trivially satisfies both (NH) (as

H is normal in G) and (PH). By Lemma 5.3.2(iii), kG/PkG also satisfies (QH). Now

Lemma 5.3.4 shows that (kG/PkG)α also satisfies (NH) and (QH), so that σ induces

a group action of F on the p-valuations of H inside (kG/PkG)α by Lemma 5.3.5.

Let L be a closed isolated characteristic subgroup of H containing H ′.

Corollary 5.3.9. With notation as above, we can find an F -stable p-valuation ω on

H satisfying (AL).

Proof. This now follows immediately from Corollary 5.2.6 and Lemma 5.3.6.
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Chapter 6

A graded ring

6.1 Generalities on ring filtrations

Definition 6.1.1. Recall that a filtration v on the ringR is a function v : R→ R∪{∞}

satisfying, for all x, y ∈ R,

• v(x+ y) ≥ min{v(x), v(y)},

• v(xy) ≥ v(x) + v(y),

• v(0) =∞, v(1) = 0.

If in addition we have v(xy) = v(x) + v(y) for all x, y ∈ R, then v is a valuation on

R.

First, a basic property of ring filtrations.

Lemma 6.1.2. Suppose v is a filtration on R which takes non-negative values, i.e.

v(R) ⊆ [0,∞], and let u ∈ R×. Then v(ux) = v(xu) = v(x) for all x ∈ R.

Proof. By the definition of v, we have 0 = v(1) = v(uu−1) ≥ v(u) + v(u−1). As
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v(u) ≥ 0 and v(u−1) ≥ 0, we must have v(u) = 0 = v(u−1). Then

v(x) = v(u−1ux) ≥ v(u−1) + v(ux) = v(ux) ≥ v(u) + v(x) = v(x),

from which we see that v(x) = v(ux); and by a symmetric argument, we also have

v(xu) = v(x).

We will fix the following notation for this subsection.

Notation 6.1.3. Let G be a p-valuable group equipped with the p-valuation ω, and

k a field of characteristic p. Take an ordered basis (defined in [4, 4.2]) {g1, . . . , gd}

for G, and write bi = g1 − 1 ∈ kG for all 1 ≤ i ≤ d. As in [4], we make the following

definitions:

• for each α ∈ Nd, bα means the (ordered) product bα1
1 . . . bαdd ∈ kG,

• for each α ∈ Zdp, gα means the (ordered) product gα1
1 . . . gαdd ∈ G,

• for each α ∈ Nd, 〈α, ω(g)〉 means
d∑
i=1

αiω(gi),

• the canonical ring homomorphism Zp → k will sometimes be left implicit, but

will be denoted by ι when necessary for clarity.

Definition 6.1.4. With notation as above, let w be the valuation on kG defined

in [4, 6.2], given by

∑
α∈Nd

λαb
α 7→ inf

α∈Nd

{
〈α, ω(g)〉

∣∣ λα 6= 0
}
.

Note that, in light of this formula [4, Corollary 6.2(b)], and by the construction [13, III,

2.3.3] of w, it is clear that the value of w is in fact independent of the ordered basis

chosen. In particular, if ϕ is an automorphism of G, then {gϕ1 , . . . , g
ϕ
d } is another

ordered basis of G; hence if ω is ϕ-stable (in the sense that ω(gϕ) = ω(g) for all
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g ∈ G), then w is ϕ-stable (in the sense that w(xϕ) = w(x) for all x ∈ kG, where ϕ

here denotes the natural extension to kG).

We will need the following result:

Lemma 6.1.5. Let

b = b0 + b1p+ b2p
2 + · · · ∈ Zp,

n = n0 + n1p+ n2p
2 + · · ·+ nsp

s ∈ N,

where all bi, ni ∈ {0, 1, . . . , p− 1}. Then

(
b

n

)
≡

s∏
i=0

(
bi
ni

)
mod p.

Proof. See e.g. [2, Theorem].

Corollary 6.1.6. Let b ∈ Zp, n ∈ N. If

vp

((
b

n

))
= 0, (6.1.1)

then vp(b) ≤ vp(n). Further, for fixed b ∈ Zp,

inf

{
n ∈ N

∣∣∣∣ vp((bn
))

= 0

}
= pvp(b).

Proof. From Lemma 6.1.5 above, we can see that

(
b

n

)
≡ 0 mod p

if and only if, for some 0 ≤ i ≤ s,

(
bi
ni

)
= 0,
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which happens if and only if one of the pairs (bi, ni) for 0 ≤ i ≤ s has bi = 0 6= ni.

Hence, to ensure that this does not happen, we must have vp(b) ≤ vp(n). It is

clear from Lemma 6.1.5 that n = pvp(b) satisfies (6.1.1), and is the least n ∈ N with

vp(b) ≤ vp(n).

Theorem 6.1.7. Take any x ∈ G, and t = inf ω(G). Then w(x − 1) > t implies

ω(x) > t.

Proof. Write x = gα. In order to show that ω(gα) > t, it suffices to show that

ω(gj) + vp(αj) > t for each j (as there are only finitely many), and hence that

vp(αj) ≥ 1 for all j such that ω(gj) = t. This is equivalent to the claim that pvp(αj) > 1,

which we will write as pvp(αj)ω(gj) > t for all j with ω(gj) = t.

Let β(j) be the d-tuple with ith entry δijp
vp(αj). Then, of course,

〈β(j), ω(g)〉 = pvp(αj)ω(gj),

and by Corollary 6.1.6, we have

(
α

β(j)

)
6≡ 0 mod p.

Now suppose that w(gα − 1) > t. We perform binomial expansion in kG to see that

gα − 1 =
∏

1≤i≤d

(1 + bi)
αi − 1 (ordered product)

=
∑
β∈Nd

ι

(
α

β

)
bβ − 1

=
∑
β 6=0

ι

(
α

β

)
bβ,

108



so that

w(gα − 1) = inf

{
〈β, ω(g)〉

∣∣∣∣ β 6= 0,

(
α

β

)
6≡ 0 mod p

}
.

So in particular, for all j satisfying ω(gj) = t, we have

t < w(gα − 1) ≤ 〈β(j), ω(g)〉 = pvp(αj)ω(gj),

which is what we wanted to prove.

6.2 Constructing a suitable valuation

Let H be a nilpotent p-valuable group with centre Z. If k is a field of characteristic

p, and p is a faithful prime ideal of kZ, then by [4, Theorem 8.4], the ideal P := pkH

is again a faithful prime ideal of kH.

We will fix the following notation for this subsection.

Notation 6.2.1. Let G be a nilpotent-by-finite compact p-adic analytic group, with

∆+ = 1, and let H = FNp(G) (as in Definition 2.5.3), here a nilpotent p-valuable

radical, so that ∆ = Z := Z(H). We will also write F = G/H.

Define Q′ = Q(kZ/p), the (classical) field of fractions of the (commutative) domain

kZ/p, andQ = Q′⊗
kZ
kH, a tensor product of kZ-algebras, which (as P = pkH) we may

naturally identify with the (right) localisation of kH/P with respect to (kZ/p) \ {0}

– a subring of the Goldie ring of quotients Q(kH/P ).

Suppose further that the prime ideal p�kZ is invariant under conjugation by elements

of G.
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Choose a crossed product decomposition

kG/PkG = kH/P ∗
〈σ,τ〉

F

which is standard in the sense of the notation of Corollary 5.3.9. Choose also any

α ∈ Z2
σ(F,Z((kH/P )×)), and form as in Definition 4.2.2 the central 2-cocycle twist

(kG/PkG)α = kH/P ∗
〈σ,τα〉

F.

Now the (right) divisor set (kZ/p)\{0} is G-stable by assumption, so by [22, Lemma

37.7], we may define the partial quotient ring

R := Q ∗
〈σ,τα〉

F. (6.2.1)

Our aim in this subsection is to construct an appropriate filtration f on the ring R.

We will build this up in stages, following [4]. First, we define a finite set of valuations

on Q′.

Definition 6.2.2. In [4, Theorem 7.3], Ardakov defines a valuation on Q(kH/P ); let

v1 be the restriction of this valuation to Q′, so that v1(x + p) ≥ w(x) for all x ∈ kZ

(where w is as in Definition 6.1.4).

Lemma 6.2.3. σ induces a group action of F on the set of valuations of Q′.

Proof. Let u be a valuation of Q′. G acts on the set of valuations of Q′ as follows:

(g · u)(x) = u(g−1xg).

Clearly, if g ∈ H, then g−1xg = x (as x ∈ Q(kZ/p) where Z is the centre of H).

Hence H lies in the kernel of this action, and we get an action of F on the set of
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valuations. By our choice of F as a subset of the image of G, this is the same as

σ.

Write {v1, . . . , vs} for the F -orbit of v1.

Lemma 6.2.4. The valuations v1, . . . , vs are independent.

Proof. The vi are all non-trivial valuations with value groups equal to subgroups of

R by definition. Hence, by [6, VI.4, Proposition 7], they have height 1.

They are also pairwise inequivalent: indeed, suppose vi is equivalent to g · vi for some

g ∈ F . Then by [6, VI.3, Proposition 3], there exists a positive real number λ with

vi = λ(g · vi), and so vi = λn(gn · vi) (as the actions of λ and g commute) for all n.

But F is a finite group: so, taking n = o(g), we get vi = λnvi. As vi is non-trivial, we

must have that λn = 1, and so λ = 1. So we may conclude, from [6, VI.4, Proposition

6(c)], that the valuations v1, . . . , vs are independent.

Definition 6.2.5. Let v be the filtration of Q′ defined by

v(x) = inf
1≤i≤s

vi(x)

for each x ∈ Q′.

Lemma 6.2.6. grvQ
′ ∼=

s⊕
i=1

grviQ
′.

Proof. The natural map

Q′v,λ →
s⊕
i=1

Q′vi,λ/Q
′
vi,λ+

clearly has kernel
s⋂
i=1

Q′vi,λ+ = Q′v,λ+ , giving an injective map grvQ
′ →

s⊕
i=1

grviQ
′.

The surjectivity of this map now follows from the Approximation Theorem [6, VI.7.2,

Théorème 1], as the vi are independent by Lemma 6.2.4.
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Next, we will extend the vi and v from Q′ to Q, as in the proof of [4, 8.6].

Notation 6.2.7. Continue with the notation above. Now, as H is p-valuable, and

by Lemma 5.3.8, F acts on the set of p-valuations of H; hence, by Lemma 5.3.6 (or

Corollary 5.3.9), we may choose a p-valuation ω which is F -stable. Fix such an ω,

and construct the valuation w on kH from it as defined in Definition 6.1.4.

Let {ye+1, . . . , yd} be an ordered basis for Z, and extend it to an ordered basis

{y1, . . . , yd} for H as in Lemma 1.3.2. For each 1 ≤ j ≤ e, set cj = yj − 1 inside the

ring kH/P .

Recall from [4, 8.5] that elements of Q may be written uniquely as

∑
γ∈Ne

rγc
γ,

where rγ ∈ Q′ and cγ := cγ1

1 . . . cγee , so that Q ⊆ Q′[[c1, . . . , ce]] as a left Q′-module.

Definition 6.2.8. For each 1 ≤ i ≤ s, as in [4, proof of Theorem 8.6], we will define

the valuation fi : Q→ R ∪ {∞} by

fi

(∑
γ∈Ne

rγc
γ

)
= inf

γ∈Ne
{vi(rγ) + w(cγ)}.

(We remark here a slight abuse of notation: the domain of w is kH, and so w(cγ)

must be understood to mean w(bγ), where bj = yj − 1 inside the ring kH for each

1 ≤ j ≤ e. That is, bj is the “obvious” lift of cj from kH/P to kH.)

Note in particular that fi|Q′ = vi, and grfiQ is a commutative domain, again by [4,

proof of Theorem 8.6].

Lemma 6.2.9. σ induces a group action of F on the set of valuations of Q.

Proof. Let u be a valuation of Q. Again, G acts on the set of valuations of Q by
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(g · u)(x) = u(g−1xg). Now, any n ∈ H can be considered as an element of Q×, so

that

(n · u)(x) = u(n−1xn) = u(n−1) + u(x) + u(n) = u(x).

In the following lemma, we crucially use the fact that ω has been chosen to be F -

stable.

Lemma 6.2.10. f1, . . . , fs is the F -orbit of f1.

Proof. Take some g ∈ F and some 1 ≤ i, j ≤ s such that vj = g ·vi. We will first show

that, for all x ∈ Q, we have fj(x) ≤ g·fi(x). Indeed, as fj|Q′ = vj = g·vi = g·fi|Q′ , and

both fj and g ·fi are valuations, it will suffice to show that (w(ck) =)fj(ck) ≤ g ·fi(ck)

for each 1 ≤ k ≤ e.

Fix some 1 ≤ k ≤ e. Write ygk = zyα for some α ∈ Zep and z ∈ Z, so that

cgk = ygk − 1 = zyα − 1

= (z − 1) + z

(
e∏
i=1

(1 + ci)
αi − 1

)
(ordered product)

= (z − 1) + z

(∑
β 6=0

ι

(
α

β

)
cβ

)
,

and hence

(g · fi)(ck) = inf

{
vi(z − 1), w(cβ)

∣∣∣∣ ι(αβ
)
6= 0

}
by Definition 6.2.8

≥ inf

{
w(z − 1), w(cβ)

∣∣∣∣ ι(αβ
)
6= 0

}
by Definition 6.2.2

= w(cgk),

with this final equality following from [4, Lemma 8.5(b)]. But now, as ω has been
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chosen to be G-stable, w is also G-stable (see the remark in Definition 6.1.4), so that

w(cgk) = w(ck).

Now, we have shown that, if vj = g · vi on Q′, then fj ≤ g · fi on Q.

Similarly, we have vi = g−1 · vj on Q′, so fi ≤ g−1 · fj on Q. But fi(x) ≤ fj(x
g−1

) for

all x ∈ Q is equivalent to fi(y
g) ≤ fj(y) for all y ∈ Q (by setting x = yg). Hence we

have fi = g · fj on Q, and we are done.

As in Definition 6.2.5:

Definition 6.2.11. Let f be the filtration of Q defined by

f(x) = inf
1≤i≤s

fi(x)

for each x ∈ Q.

We now verify that the relationship between f and v is the same as that between the

fi and the vi (Definition 6.2.8).

Lemma 6.2.12. Take any x ∈ Q, and write it in standard form as

x =
∑
γ∈Ne

rγc
γ.

Then we have

f(x) = inf
γ∈Ne
{v(rγ) + w(cγ)}.

Proof. Immediate from Definitions 6.2.5, 6.2.8 and 6.2.11.

Now we can extend Lemma 6.2.6 to Q:

Lemma 6.2.13. grfQ
∼=

s⊕
i=1

grfiQ.
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Proof. As in the proof of Lemma 6.2.6, we get an injective map

grfQ→
s⊕
i=1

grfiQ.

The proof of [4, 8.6] gives a map

(grv(kZ/p))[Y1, . . . , Ye]→ grf (kH/P )

and isomorphisms

(grvi(kZ/p))[Y1, . . . , Ye] ∼= grfi(kH/P )

for each 1 ≤ i ≤ s, in each case mapping Yj to gr(cj) for each 1 ≤ j ≤ e.

Now, gr kH is a gr-free [10, §I.4.1, p. 28] gr kZ-module with respect to f and each

fi, and each of these filtrations is discrete on kH by construction (see [4, Corollary

6.2 and proof of Theorem 7.3]), so by [10, I.6.2(3)], kH is a filt-free kZ-module

with respect to f and each fi; and by [10, I.6.14], these maps extend to a map

(grvQ
′)[Y1, . . . , Ye]→ grfQ and isomorphisms (grviQ

′)[Y1, . . . , Ye] ∼= grfiQ for each i.

Applying Lemma 6.2.10 to each 1 ≤ i ≤ s, we get isomorphisms

(grviQ
′)[Y1, . . . , Ye]→ grfiQ,

which give a commutative diagram

(grvQ
′)[Y1, . . . , Ye]

∼= //

��

s⊕
i=1

(grviQ
′)[Y1, . . . , Ye]

∼=
��

grfQ
� � //

s⊕
i=1

grfiQ.

Hence clearly all maps in this diagram are isomorphisms.
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Now we return to the ring R = Q ∗ F defined in (7.3.2).

Definition 6.2.14. We can extend the filtration f on Q to an F -stable filtration

on R by giving elements of the basis F value 0. That is, writing F = {g1, . . . , gm},

any element of Q ∗ F can be expressed uniquely as
∑m

r=1 grxr for some xr ∈ Q: the

assignment

Q ∗ F → R ∪ {∞}
m∑
r=1

grxr 7→ inf
1≤r≤m

{
f(xr)

}

is clearly a filtration on Q ∗ F whose restriction to Q is just f . We will temporarily

refer to this filtration as f̂ , though later we will drop the hat and simply call it f .

Note that, for any real number λ,

(Q ∗ F )f̂ ,λ =
m⊕
i=1

gi(Qf,λ),

(Q ∗ F )f̂ ,λ+ =
m⊕
i=1

gi(Qf,λ+),

so that

grf̂ (Q ∗ F ) =
⊕
λ∈R

(
m⊕
i=1

gi(Qf,λ/Qf,λ+)

)

=
m⊕
i=1

gi

(⊕
λ∈R

(Qf,λ/Qf,λ+)

)
=

m⊕
i=1

gi
(
grf (Q)

)
.

That is, given the data of a crossed product Q∗F as in (7.3.2), we may view grf̂ (Q∗F )

as grf (Q) ∗ F in a natural way.

We will finally record this as:

116



Lemma 6.2.15.

grf (Q ∗ F ) = grf (Q) ∗ F ∼=

(
s⊕
i=1

grfiQ

)
∗ F

∼=

(
s⊕
i=1

(grviQ
′)[Y1, . . . , Ye]

)
∗ F,

where each grfiQ (or equivalently each grviQ
′) is a domain (see Definition 6.2.8). F

permutes the fi (or equivalently the vi) transitively by conjugation.

6.3 Automorphisms trivial on a free abelian quo-

tient

We will fix the following notation for this subsection.

Notation 6.3.1. Let H be a nilpotent but non-abelian p-valuable group with centre

Z. Write H ′ for the isolated derived group of H (Definition 2.3.7), and suppose we are

given a closed isolated proper characteristic subgroup L of H which contains H ′ and

Z. (We will show that such an L always exists in Lemma 7.2.3.) Fix a p-valuation ω

on H satisfying (AL) (which is possible by Corollary 5.3.9).

Let {gm+1, . . . , gn} be an ordered basis for Z. Using Lemma 1.3.2 twice, extend this

to an ordered basis {gl+1, . . . , gn} for L, and then extend this to an ordered basis

{g1, . . . , gn} for H. Diagrammatically:

BH =
{
g1, . . . , gl︸ ︷︷ ︸

BH/L

, gl+1, . . . , gm︸ ︷︷ ︸
BL/Z

, gm+1, . . . , gn︸ ︷︷ ︸
BZ

}

in the notation of the remark after Lemma 1.3.2. Here, 0 < l ≤ m < n, corresponding

to the chain of subgroups 1 � Z ≤ L � H.
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Let k be a field of characteristic p. As before, let p be a faithful prime ideal of kZ,

so that P := pkH is a faithful prime ideal of kH, and write bj = gj − 1 ∈ kH/P for

all 1 ≤ j ≤ m.

In this subsection, we will write:

• for each α ∈ Nm, bα means the (ordered) product bα1
1 . . . bαmm ∈ kH/P ,

• for each α ∈ Zmp , gα means the (ordered) product gα1
1 . . . gαmm ∈ H,

• for each α ∈ Nm, 〈α, ω(g)〉 means
m∑
i=1

αiω(gi).

Note the use of m rather than n in each case. This means that every element x ∈ H

may be written uniquely as

x = zgα

for some α ∈ Zmp and z ∈ Z; and every element y ∈ kH/P may be written uniquely

as

y =
∑
γ∈Nm

rγb
γ

for some elements rγ ∈ kZ/p.

Recall the definitions of the filtrations w on kH (Definition 6.1.4), v on kZ/p (Defi-

nition 6.2.5) and f on kH/P (Definition 6.2.11). We will continue to abuse notation

slightly for w, as in Definition 6.2.8.

Recall also that, as we have chosen ω to satisfy (AL), we have that

w(b1) = · · · = w(bl) < w(br)

for all r > l.

Let σ be an automorphism of H, and suppose that, when naturally extended to

an automorphism of kH, it satisfies σ(P ) = P . Hence we will consider σ as an
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automorphism of kH/P , preserving the subgroup H ⊆ (kH/P )×.

Corollary 6.3.2. With the above notation, fix 1 ≤ i ≤ l. If f(σ(bi) − bi) > f(bi),

then w(σ(bi)− bi) > w(bi).

Proof. Write in standard form

σ(bi)− bi =
∑
γ∈Nm

rγb
γ,

for some rγ ∈ kZ, and suppose that f(σ(bi)− bi) > f(bi). That is, by Lemma 6.2.12,

v(rγ) + w(bγ) > w(bi)

for each fixed γ ∈ Nm.

We will show that w(rγ) + w(bγ) > w(bi) for each γ. We deal with two cases.

Case 1: w(bγ) > w(bi). Then, as w takes non-negative values on kH, we are already

done.

Case 2: w(bγ) ≤ w(bi). Then, by (AL), we have either w(rγ) > w(bi) or w(rγ) = 0.

In the former case, we are done automatically, so assume we are in the latter case and

w(rγ) = 0. Then, by [4, 6.2], rγ must be a unit in kZ, and so f(rγ) = 0 by Lemma

6.1.2, a contradiction.

Hence w(rγ) +w(bγ) > w(bi) for all γ ∈ Nm. But, as w is discrete by [4, 6.2], we may

now take the infimum over all γ ∈ Nm, and the inequality remains strict.

Let σ be an automorphism of H, and recall that H/L is a free abelian pro-p group

of rank l. Choose a basis e1, . . . , el for Zlp; then the map giL 7→ ei for 1 ≤ i ≤ l is an

isomorphism j : H/L→ Zlp. As L is characteristic in H by assumption, σ induces an

automorphism of H/L, which gives a matrix Mσ ∈ GLl(Zp) under this isomorphism.
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Write

ω : H/L→ R ∪ {∞}

for the quotient p-valuation on H/L induced by ω, i.e.

ω(xL) = sup
`∈L
{ω(x`)}

– note that this is just the (t, p)-filtration (Definition 5.1.2), as we have chosen ω to

satisfy (AL). Then write

Ω : Zlp → R ∪ {∞}

for the map Ω = ω ◦ j−1, the (t, p)-filtration on Zlp corresponding to ω under the

isomorphism j.

Remark. If x ∈ Zlp has Ω(x) ≥ t + 1, then x ∈ pZlp, by the definition of the (t, p)-

filtration.

As earlier, we will write Γ(1) = 1 + pGLl(Zp), the open subgroup of GLl(Zp) whose

elements are congruent to the identity element modulo p.

Corollary 6.3.3. With the above notation, if f(σ(bi)− bi) > f(bi) for all 1 ≤ i ≤ l,

then Mσ ∈ Γ(1).

Proof. We have, for all 1 ≤ i ≤ l,

f(σ(bi)− bi) > f(bi) =⇒ w(σ(bi)− bi) > w(bi) by Corollary 6.3.2,

=⇒ ω(σ(gi)g
−1
i ) > ω(gi) by Theorem 6.1.7,

– which is condition (5.1.1). Now we may invoke Theorem 5.1.1.

Corollary 6.3.4. Suppose now further that σ is an automorphism of H of finite

order. If p > 2 and f(σ(bi)− bi) > f(bi) for all 1 ≤ i ≤ l, then σ induces the identity
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automorphism on H/L.

Proof. We have shown that Mσ ∈ Γ(1), a p-valuable (hence torsion-free) group; and

if σ has finite order, then Mσ must have finite order. So Mσ is the identity map.

Remark. When p = 2, Γ(1) is no longer p-valuable.

Example 6.3.5. Let p = 2, and let

H = 〈x, y, z | [x, y] = z, [x, z] = 1, [y, z] = 1〉

be the (2-valuable) Z2-Heisenberg group. Let σ be the automorphism sending x to

x−1, y to y−1 and z to z. Take L = 〈z〉, and P = 0.

Write X = x− 1 ∈ kH/P , and likewise Y = y − 1 and Z = z − 1. Now,

σ(X) = σ(x)− 1 = x−1 − 1 = (1 +X)−1 − 1 = −X +X2 −X3 + . . . ,

and so σ(X)−X = X2−X3+. . . (as char k = 2). Hence f(σ(X)−X) = f(X2) > f(X);

but

Mσ =

−1 0

0 −1

 ∈ Γ(1, GL2(Z2)),

and in particular Mσ 6= 1.
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Chapter 7

Extending prime ideals from

FNp(G)

7.1 X-inner automorphisms

Recall the notation XinnS(R;G) from Definition 4.2.3.

Lemma 7.1.1. R a prime ring andR∗G a crossed product. LetGinn := XinnR∗G(R;G).

(i) If σ ∈ Aut(R) is X-inner, then σ is trivial on the centre of R.

(ii) If H is a subgroup of G containing Ginn, and R ∗H is a prime ring, then R ∗G

is a prime ring.

Proof.

(i) This follows from the description of X-inner automorphisms of R as restrictions

of inner automorphisms of the Martindale symmetric ring of quotients Qs(R),

and the fact that Z(R) stays central in Qs(R): see [22, §12] for details.

(ii) This follows from [22, Corollary 12.6]: if I is a nonzero ideal of R ∗ G, then
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I ∩R ∗Ginn is nonzero, and hence I ∩R ∗H is nonzero.

7.2 Properties of FNp(G)

We prove here some important facts about the group FNp(G).

Lemma 7.2.1. Let G be a nilpotent-by-finite compact p-adic analytic group with

∆+ = 1. Let H = FNp(G), and write

K := KG(H) = {x ∈ G | [H, x] ≤ H ′},

where H ′ denotes the isolated derived subgroup of H. Then K = H.

Proof. Firstly, note that K clearly contains H, by definition of H ′.

Secondly, suppose that H is p-saturated. By the same argument as in Lemma 2.4.3, K

acts nilpotently on H, and so K acts nilpotently on the Lie algebra h associated to H

under Lazard’s isomorphism of categories [13]. That is, we get a group representation

Ad : K → Aut(h), and (Ad(k) − 1)(hi) ⊆ hi+1 for each k ∈ K and each i. (Here, hi

denotes the ith term in the lower central series for h.)

Choosing a basis for h adapted to the flag

h ) h2 ) · · · ) hr = 0,

we see that Ad is a representation of K for which Ad(k)−1 is strictly upper triangular

for each k ∈ K; in other words, Ad : K → U , where U is a closed subgroup of some

GLn(Zp) consisting of unipotent upper-triangular matrices. Hence the image Ad(K)

is nilpotent and torsion-free.

Furthermore, ker Ad is the subgroup of K consisting of those elements k which cen-
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tralise h, and therefore centralise H. This clearly contains Z(H). On the other hand,

if k centralises H, then k is centralised by H, an open subgroup of G, and so k must

be contained in ∆. But ∆ = Z(H) by Lemma 2.5.1(ii).

Hence K is a central extension of two nilpotent, torsion-free compact p-adic analytic

groups of finite rank, and so is such a group itself; hence K is nilpotent p-valuable by

Lemma 2.1.3, and so must be contained in H by definition of FNp(G).

Now suppose H is not p-saturated. Conjugation by k ∈ K induces the trivial au-

tomorphism on H/H ′, so by [13] it does also on Sat (H/H ′), which is naturally iso-

morphic to SatH/(SatH)′ by Lemma 2.3.2. This shows that K ⊆ KG(SatH). But

now, writing h for the Lie algebra associated to SatH, the same argument as above,

mutatis mutandis, shows that KG(SatH) = H.

Some properties.

Lemma 7.2.2. Let G be a compact p-adic analytic group with ∆+ = 1, and write

H = FNp(G). If H is not abelian, then H/Z = FNp(G/Z).

Proof. H/Z is a nilpotent p-valuable open normal subgroup of G/Z, so must be

contained within FNp(G/Z). Conversely, the preimage in G of FNp(G/Z) is a central

extension of Z by FNp(G/Z), two nilpotent and torsion-free groups, and hence is

nilpotent and torsion-free, so must be p-valuable by Lemma 2.1.3, which shows that

it must be contained within H.

The (closed, isolated orbital, characteristic) subgroup iH(H ′Z) of H = FNp(G) will

be crucial throughout this section, so we record some results.

Lemma 7.2.3. Let H be a nilpotent p-valuable group. If H is not abelian, then

H 6= iH(H ′Z).
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Proof. Suppose first that H is p-saturated, and write h and z for the Lie algebras

of H and Z respectively under Lazard’s correspondence [13]. If h = h2z (writing h2

for the second term in the lower central series of h), then by applying [h,−] to both

sides, we see that h2 = h3. But as h is nilpotent, this implies that h2 = 0, so that h

is abelian, a contradiction.

When H is not p-saturated: note that iH(H ′Z) = Sat(H ′Z)∩H, by Lemma 2.3.1, and

so that Sat(H/iH(H ′Z)) ∼= Sat(H)/Sat(H ′Z) by Lemma 2.3.2. Hence H/iH(H ′Z) has

the same (in particular non-zero) rank as Sat(H)/Sat(H ′Z).

Lemma 7.2.4. Let G be a nilpotent-by-finite compact p-adic analytic group with

∆+ = 1. Let H = FNp(G), and assume that H is not abelian. Write

M := MG(H) = {x ∈ G | [H, x] ≤ iH(H ′Z)},

where H ′ denotes the isolated derived subgroup of H and Z its centre. Then M = H.

Proof. Clearly Z ≤M . We will calculate M/Z.

First, note that iH(H ′Z)/Z is an isolated normal subgroup of H/Z, as the quotient

is isomorphic to H/iH(H ′Z), which is torsion-free. Also, as iH(H ′Z) contains H ′Z

and hence [H,H]Z as an open subgroup, clearly iH(H ′Z)/Z contains [H,H]Z/Z as

an open subgroup, so that iH(H ′Z)/Z ≤ iH/Z([H,H]Z/Z).

Now, [H/Z,H/Z] = [H,H]Z/Z as abstract groups, so by taking their closures followed

by their (H/Z)-isolators, we see that

(H/Z)′ = iH/Z
(
[H,H]Z/Z

)
= iH/Z

(
[H,H]Z/Z

)
,

so that

iH(H ′Z)/Z = (H/Z)′.
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But x ∈M if and only if [H, x] ≤ iH(H ′Z), which is equivalent to [H/Z, xZ] ≤ (H/Z)′,

or in other words xZ ∈ KG/Z(H/Z) = H/Z by Lemma 7.2.1. So M/Z = H/Z, and

hence M = H.

7.3 The extension theorem

Proposition 7.3.1. Let G be a nilpotent-by-finite compact p-adic analytic group

with ∆+ = 1. Let H = FNp(G), and write F = G/H. Let P be a G-stable, faithful

prime ideal of kH. Let (kG)α be a central 2-cocycle twist of kG with respect to a

standard (Definition 5.3.7) decomposition

kG = kH ∗
〈σ,τ〉

F,

for some α ∈ Z2
σ(F,Z((kH)×)), as in Theorem 4.2.10. Then P (kG)α is a prime ideal

of (kG)α.

Proof. First, we note that the claim that P (kG)α is a prime ideal of (kG)α is equiv-

alent to the claim that

(kG)α/P (kG)α = kH/P ∗
〈σ,τα〉

F

is a prime ring.

Case 1. Suppose that G centralises Z.

If H is abelian, so that H = Z, then every g ∈ G is centralised by Z, an open

subgroup of G. Hence g ∈ ∆, i.e. G = ∆. But, by Lemma 2.5.1, ∆ ≤ H, and so we

have G = H and there is nothing to prove.

So suppose henceforth that Z � H, and write L := iH(H ′Z), so that, by Lemma
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7.2.3, we have L � H. As the decomposition of kG is standard, we may view F as a

subset of G.

The idea behind the proof is as follows. We will construct a crossed product R ∗ F ′,

where R is a certain commutative domain and F ′ is a certain subgroup of F , with

the following property: if R ∗F ′ is a prime ring, then P (kG)α is a prime ideal. Then,

by using the well-understood structure of R, we will show that the action of F ′ on R

is X-outer (in the sense of Definition 4.2.3), so that R ∗ F ′ is a prime ring.

By Corollary 5.3.9, we can see that H admits an F -stable p-valuation ω satisfying

(AL). Hence, in the notation of §6.1, we may define the filtration w from ω as in

Definition 6.1.4. Furthermore, we write

Q′ = Q(kZ/P ∩ kZ), Q = Q′ ⊗
kZ
kN,

as in §6.2; and we endow Q with the F -orbit of filtrations fi (1 ≤ i ≤ s) and the

filtration f of Definitions 6.2.8 and 6.2.11, defined in terms of the filtration w above.

By [18, 2.1.16(vii)], in order to show that the crossed product

kH/P ∗
〈σ,τα〉

F (7.3.1)

is a prime ring, it suffices to show that the related crossed product

Q ∗
〈σ,τα〉

F (7.3.2)

is prime, where this crossed product is defined in §6.2. Then, by [10, II.3.2.7], it

suffices to show that

grf (Q ∗ F ) (7.3.3)
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is prime. Details of this graded ring are given in Lemma 6.2.15: in particular, note

that

grf (Q ∗ F ) ∼=

(
s⊕
i=1

grfiQ

)
∗ F.

Now, as noted in Definition 6.2.8, each grfiQ is a commutative domain, and by

construction, F permutes the summands grfiQ transitively. So by [22, Corollary

14.8] it suffices to show that

grf1
Q ∗ F ′ (7.3.4)

is prime, where F ′ = StabF (f1).

Notation 7.3.2. We set up notation in order to be able to apply the results of §6.3.

Let {ym+1, . . . , yn} be an ordered basis for Z, which we extend to an ordered basis

{yl+1, . . . , yn} for L, which we extend to an ordered basis {y1, . . . , yn} for H. Set

bi = yi − 1 ∈ kH/P , and let Yi = grf1
(bi) for all 1 ≤ i ≤ m. Then

grf1
Q ∼=

(
grv1

Q′
)

[Y1, . . . , Ym].

The ring on the right-hand side inherits a crossed product structure

(
grv1

Q′
)

[Y1, . . . , Ym] ∗ F ′. (7.3.5)

from (7.3.4). Writing R :=
(
grv1

Q′
)

[Y1, . . . , Ym], we have now shown, by passing

along the chain

(7.3.5) → (7.3.4) → (7.3.3) → (7.3.2) → (7.3.1),

that we need only show that R ∗ F ′ is prime.
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Write F ′inn for the subgroup of F ′ acting on R by X-inner automorphisms in the

crossed product (7.3.5), i.e.

F ′inn = XinnR∗F ′(R;F ′)

in the notation of Definition 4.2.3. By the obvious abuse of notation, we will denote

this action as the map of sets gr σ : F ′ → Aut(R).

Take some g ∈ F ′. If gr σ(g) acts non-trivially on R, then as R is commutative, we

have g 6∈ F ′inn. Hence, as by Lemma 7.1.1(ii) we need only show that R∗F ′inn is prime,

we may restrict our attention to those g ∈ F ′ that act trivially on R. In particular,

such a g ∈ F ′ must centralise each Yi. But

gr σ(g)(Yi) = Yi ⇔ f(σ(g)(bi)− bi) > f(bi).

Now we see from Corollary 6.3.4 that σ(g) induces the identity automorphism on

H/L, and hence from Lemma 7.2.4 that g ∈ H. That is, F ′inn is the trivial group, so

that R ∗ F ′inn = R is automatically prime.

Case 2. Suppose some x ∈ F does not centralise Z. Write Finn for the subgroup of

F acting by X-inner automorphisms on kH/P in the crossed product (7.3.1), i.e.

Finn := Xinn(kG)α/P (kG)α(kH/P ;F ).

Then, by Lemma 7.1.1(i), x 6∈ Finn; so Finn is contained in CF (Z), and we need only

prove that the sub-crossed product (kH/P ) ∗ CF (Z) is prime by Lemma 7.1.1(ii).

This reduces the problem to Case 1.

Proposition 7.3.3. Let G be a nilpotent-by-finite compact p-adic analytic group,

and k a finite field of characteristic p > 2. Let H = FNp(G), and write F = G/H.
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Let P be a G-stable, almost faithful prime ideal of kH. Then PkG is prime.

Proof. Recall Notation 1.5.2. Let e ∈ cpik∆+
(P ), and write fH = e|H , f = e|G. Then

PkG is a prime ideal of kG if and only if f · PkG is prime in f · kG.

Write H1 = StabH(e) and G1 = StabG(e). Then, by the Matrix Units Lemma 4.3.1,

we get an isomorphism

f · kG ∼= Ms(e · kG1)

for some s, under which the ideal f · PkG is mapped to Ms(e · P1kG1), where P1 is

the preimage in kH1 of e · P · e. It is easy to see that P1 is prime in kH1; indeed,

applying the Matrix Units Lemma to kH, we get

fH · kH ∼= Ms′(e · kH1),

under which fH ·P 7→Ms′(e ·P1), so that P1 is prime by Morita equivalence (Lemma

1.6.5). We also know from Lemma 4.3.6 (or the remark after Lemma 4.3.2) that

P † =
⋂
h∈H

(P †1 )h.

Now, writing q to denote the natural map G→ G/∆+,

q

((
P †1 ∩∆

)h)
= q

(
P †1 ∩∆

)

for all h ∈ H, as q(∆) = Z(q(H)) by definition of H (see Lemma 2.5.1(ii)); and so

q
(
P † ∩∆

)
= q

(
P †1 ∩∆

)
= q(1).

But q
(
P †1

)
is a normal subgroup of the nilpotent group q (H1). Hence, as the inter-

section of q
(
P †1

)
with the centre q(∆) of q(H) is trivial, we must have that q

(
P †1

)
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is trivial also [23, 5.2.1]. That is, P †1 ≤ ∆+(H1) = ∆+.

Now, in order to show that Ms(e · P1kG1) is prime, we may equivalently (by Morita

equivalence) show that e ·P1kG1 is prime. By Theorem 4.2.10, we get an isomorphism

e · kG1
∼= Mt

(
(k′[[G1/∆

+]])α
)
,

for some integer t, some finite field extension k′/k, and a central 2-cocycle twist (Defi-

nition 4.2.2) of k′[[G1/∆
+]] with respect to a standard crossed product decomposition

k′[[G1/∆
+]] = k′[[H1/∆

+]] ∗
〈σ,τ〉

(G1/H1)

given by some

α ∈ Z2
σ

(
G1/H1, Z

((
k′[[H1/∆

+]]
)×))

.

Writing the image of e · P1 as Mt(p) for some ideal p ∈ k′[[H1/∆
+]], we see by Corol-

laries 3.2.3 and 4.2.11 that p is a faithful, (G1/∆
+)-stable prime ideal of k′[[H1/∆

+]].

It now remains only to show that the extension of p to k′[[G1/∆
+]] is prime; but this

now follows from Proposition 7.3.1.

Proof of Theorem J. This follows from Proposition 7.3.3.
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Chapter 8

Heights of primes and Krull

dimension

8.1 Prime and G-prime ideals

Definition 8.1.1. Let G be a compact p-adic analytic group. Suppose the group

G acts (continuously) on the ring R, and that the ideal I � R is G-stable. Then,

following [22, §14], we will say that I is G-prime if, whenever A,B �R are G-stable

ideals and AB ⊆ I, then either A ⊆ I or B ⊆ I.

Lemma 8.1.2. Let G be a compact p-adic analytic group and H a closed normal

subgroup.

(i) If P is a prime ideal of kG, then P ∩ kH is a G-prime ideal of kH. If H is open

in G, then P is a minimal prime ideal above (P ∩ kH)kG.

(ii) Let Q be a G-prime ideal of kH, and P any minimal prime of kH above Q.

Then Q =
⋂
x∈G P

x. Furthermore, the set of minimal primes of kG above Q is

{P x|x ∈ G}.
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Proof.

(i) The former statement follows from [22, Lemma 14.1(i)], and the latter from [22,

Theorem 16.2(i)].

(ii) This follows from [22, Lemma 14.2(i)(ii)].

Definition 8.1.3. Let P be a prime ideal of a ring R. Then we define the height of

P to be the greatest integer h(P ) := r for which there exists a chain

P0 � P1 � · · · � Pr = P

of prime ideals in R (or ∞ if no such longest chain exists). Similarly, if the group G

acts on R by automorphisms, and P is a G-prime ideal of R, then the G-height of P

is the greatest integer hG(P ) := r for which there exists a chain

P0 � P1 � · · · � Pr = P

of G-prime ideals in R (or ∞ if no such longest chain exists).

We note the following immediate consequence of the correspondence of Lemma 8.1.2:

Corollary 8.1.4. Let G be a compact p-adic analytic group and H an open normal

subgroup. Take P a prime ideal of kG, and let Q be a minimal prime of kH above

P ∩ kH. Then h(P ) = hG(P ∩ kH) = h(Q).

8.2 Inducing ideals

Definition 8.2.1. Let H be an open (not necessarily normal) subgroup of G, and

let L be an ideal of kH. We define the induced ideal LG � kG to be the largest

(two-sided) ideal contained in the right ideal LkG�
r
kG. In other words, by [16, 2.1],
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LG is the annihilator of kG/LkG as a right kG-module, or by [22, Lemma 14.4(ii)],

LG =
⋂
g∈G

LgkG.

Lemma 8.2.2. Induction of ideals is transitive: if H and K are open subgroups of

G with H ≤ K ≤ G, and L� kH, then LG = (LK)G.

Proof. Let N be an open normal subgroup of G contained in H, and write (·) to

denote the quotient by N , so that we have kG = kN ∗ G with H ≤ K ≤ G, and

we may view L as an ideal of kN ∗ H. The result now follows from [17, Lemma

1.2(iii)].

8.3 Krull dimension

We recall some facts about Krull dimension, used here in the sense of Gabriel and

Rentschler.

Definition 8.3.1. Let 0 6= M be an R-module, and fix some ordinal α. We define

the following notation inductively:

• Kdim(M) = 0 if M is an Artinian module,

• Kdim(M) ≤ α if, for every descending chain

M0 ≥M1 ≥M2 ≥ . . .

of submodules of M , we have Kdim(Mi/Mi+1) < α for all but finitely many i.

Of course, if there exists some α such that Kdim(M) ≤ α, but we do not have

Kdim(M) ≤ β for any β < α, then we write Kdim(M) = α.
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Remark. Kdim(M) is a measure of complexity of the poset of submodules of M .

Kdim(M) may not be defined for some modules M – that is, we may not have

Kdim(M) ≤ α for any ordinal α. However, if M is a noetherian module, then

Kdim(M) is defined [11, Lemma 15.3].

Definition 8.3.2. Suppose that Kdim(M) = α. We say that M is α-homogeneous if

Kdim(N) = α for all nonzero submodules N of M .

Examples 8.3.3.

(i) Nonzero Artinian modules are 0-homogeneous.

(ii) Prime rings R, as modules over themselves, are α-homogeneous (where we set

α equal to Kdim(RR)) [11, Exercise 15E].

(iii) The property of being α-homogeneous is inherited by products [11, Corollary

15.2] and (nonzero) submodules (by definition).

We now cite and adapt some standard results on Krull dimension.

Lemma 8.3.4.

(i) [16, 1.4(ii)] Let the ring R be α-homogeneous as a right R-module. If x ∈ R

satisfies Kdim(R/xR) < Kdim(R), then x is a regular element of R.

(ii) [14, Théorème 5.3] Suppose B is a finite normalising extension of A, and let M

be a B-module. Then Kdim(MB) exists if and only if Kdim(MA) does, and if

so, then they are equal.

(iii) [11, Exercise 15R] If R is a right noetherian subring of a ring S such that S

is finitely generated as an R-module, and M is a finitely generated S-module,

then Kdim(MS) ≤ Kdim(MR).

Corollary 8.3.5. Suppose A ⊆ C ⊆ B are right noetherian rings, and B is a finite
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normalising extension of A. Let M be a finitely generated B-module. Then, if

Kdim(MB) exists, we have

Kdim(MA) = Kdim(MC) = Kdim(MB).

Proof. This follows immediately from Lemma 8.3.4(ii) and two applications of Lemma

8.3.4(iii).

Lemma 8.3.6. Let G be a compact p-adic analytic group, H an open subgroup of

G, and k a field of characteristic p. Let M be a finitely generated kG-module.

(i) Kdim(MkG) = Kdim(MkH).

(ii) Suppose that M = WkG for some submodule W of MkH . Then we have

Kdim(MkG) = Kdim(WkH).

(iii) MkG is α-homogeneous if and only if MkH is α-homogeneous.

Proof. (Adapted from [16, 1.4(iii)-(v)].)

(i) Let N be the (open) largest normal subgroup of G contained in H, so that kG

is a finite normalising extension of kN . Now apply Corollary 8.3.5.

(ii) LetN be as in (i). Then, by (i), it suffices to prove that Kdim(MkN) = Kdim(WkN).

But, as a kN -module, M is a finite sum of modules (Wg)kN for various g ∈ G,

and these are all isomorphic, so in particular have isomorphic submodule lattices

and therefore the same Kdim.

(iii) It is clear from the definition that, if MkH is α-homogeneous, then MkG is α-

homogeneous. Conversely, suppose that MkG is α-homogeneous, and let W be

a nonzero submodule of MkH . Then (WkG)kG is a nonzero submodule of MkG,

so has Krull dimension α by assumption, and hence also Kdim(WkH) = α by

(ii).
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Lemma 8.3.7. Let G be a finite group, H a subgroup, and R ∗ G a fixed crossed

product. Fix a semiprime ideal I of R ∗ G. If R ∗ G/I is α-homogeneous, then

R ∗H/(I ∩R ∗H) is α-homogeneous.

Proof. (Adapted from [7, Lemma 4.2(i)].) Let M be a nonzero right ideal of the ring

R ∗H/(I ∩R ∗H), and write β = Kdim(MR∗H). We wish to show that β = α.

M is a right module over both R ∗H and R; and R ∗G/I is a right module over both

R ∗ G and R. As R ∗ G and R ∗ H are both finite normalising extensions of R, we

may apply Lemma 8.3.4(ii) to both of these situations to see that

β = Kdim(MR∗H) = Kdim(MR)

and

α = Kdim((R ∗G/I)R∗G) = Kdim((R ∗G/I)R).

Now, as right R-modules, we have

R ∗H/(I ∩R ∗H) ∼= (R ∗H + I)/I ≤ R ∗G/I,

and so M is isomorphic to some nonzero R-submodule of R ∗G/I. In particular, this

means that

β = Kdim(MR) ≤ Kdim((R ∗G/I)R) = α.

But now (R∗G/I)R is α-homogeneous by Corollary 8.3.5, so we must have β = α.

Corollary 8.3.8. Let G be a compact p-adic analytic group, H be an open subgroup

of G, and N the largest open normal subgroup of G contained in H. Take k to be

a field of characteristic p, and let Q be a prime ideal of kH, I = QG ∩ kN , and

α = Kdim(kH/Q). Then kH/Q, kG/QG, kG/IkG are all α-homogeneous rings.
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Proof. As we observed in Example 8.3.3(ii), kH/Q is already α-homogeneous, as it

is prime of Krull dimension α.

We know from Definition 8.2.1 that the ideal QG can be written as
⋂
g∈GQ

gkG, and

that this intersection can be taken to be finite. Hence, as a right kG-module, kG/QG

is isomorphic to a (nonzero) submodule of the direct product of the various (finitely

many) kG/QgkG; and each kG/QgkG is generated as a kG-module by kHg/Qg,

which is ring-isomorphic to kH/Q. Hence Kdim(kG/QG) = Kdim(kH/Q) by Lemma

8.3.4(ii).

Finally, as QG =
⋂
g∈G(QkG)g, we see that

I =
⋂
g∈G

(QkG)g ∩ kN =
⋂
g∈G

(QkG ∩ kN)g =
⋂
g∈G

(Q ∩ kN)g,

and so, as above, kN/I is a (nonzero) subdirect product of the various kN/(Q∩kN)g,

which are all ring-isomorphic to kN/Q∩kN ; now Lemma 8.3.7 implies that kN/Q∩kN

is α-homogeneous, so kN/I is also, and kG/IkG is generated as a kG-module by

kN/I, so finally kG/IkG also inherits this property.

We borrow a result from the standard proof of Goldie’s theorem.

Lemma 8.3.9. [29, Lemma 3.13] Suppose R is a semiprime ring, satisfying the as-

cending chain condition on right annihilators of elements, and which does not contain

an infinite direct sum of nonzero right ideals. If I is an essential right ideal of R (i.e.

a right ideal that has nonzero intersection I ∩ J with each nonzero right ideal J of

R), then I contains a regular element.

These hypotheses are satisfied when R is G-prime and noetherian, for example.

Proposition 8.3.10. With notation as in Corollary 8.3.8, suppose P is a prime ideal

of kG containing QG. If P is minimal over QG, then h(P ) = h(Q).
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Proof. First, set I = QG ∩ kN . This is a G-prime ideal contained in P ∩ kN .

Suppose for contradiction that the inclusion I ⊆ P ∩ kN is strict.

First, we will show that P ∩kN/I is essential as a right ideal inside kN/I. Indeed, the

left annihilator L in kN/I of P ∩ kN/I is a G-invariant ideal which annihilates the

nonzero G-invariant ideal P ∩ kN/I, so we must have L = 0; and so, given any right

ideal T of kN/I having zero intersection with P ∩ kN/I, as we must have T ≤ L, we

conclude that T = 0.

Hence, by Lemma 8.3.9, we may find an element c ∈ P ∩ kN ⊆ kN which is regular

modulo I. As kG/IkG is a free kN/I-module, c may also be considered as an element

of P ⊆ kG which is regular modulo IkG. Hence

Kdim
(
kG/(QG + ckG)

)
kG

≤ Kdim
(
kG/(IkG+ ckG)

)
kG

as IkG+ ckG ⊆ QG + ckG

< Kdim(kG/IkG)kG by Lemma 8.3.4(i)

= Kdim(kG/QG)kG by Corollary 8.3.8,

which, again by Lemma 8.3.4(i), shows that c ∈ P is regular modulo QG.

However, we may now deduce from a reduced rank argument that P cannot be min-

imal over QG, as follows. Write ρ for the reduced rank [11, §11, Definition] of a

right module over the semiprime noetherian (hence Goldie) ring R = kG/QG, and

write (·) for images under the map kG → R. Now, c ∈ P implies cR ⊆ P , and

so by [11, Lemma 11.3] we have ρ(R/cR) ≥ ρ(R/P )(≥ 0). Further, if c is a regular

element of R, then cR ∼= R as right R-modules, so ρ(R/cR) = 0, again by [11, Lemma

11.3]. But now [11, Exercise 11C] implies that P cannot be a minimal prime of R.

This contradicts the assumption we made at the start of the proof, and so we have

shown that P ∩ kN = QG ∩ kN .
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We observed during the proof of Corollary 8.3.8 that

QG ∩ kN =
⋂
g∈G

(Q ∩ kN)g.

But Q is a prime ideal of kH, so Q∩kN is an H-prime ideal of kN , so may be written

as

Q ∩ kN =
⋂
h∈H

Qh
0

for some prime ideal Q0 of kN . Combining these two shows that

(P ∩ kN =)QG ∩ kN =
⋂
g∈G

Qg
0.

Now, by applying [22, corollary 16.8] to both P ∩ kN and Q ∩ kN , we have that

h(P ) = h(Q0) = h(Q)

as required.
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Chapter 9

Control theorem

9.1 The abelian case

We will require some facts about prime ideals in power series rings.

Lemma 9.1.1. Let A be a free abelian pro-p group of finite rank and B a closed

isolated (normal) subgroup. Take k to be a field of characteristic p. Write SpecB(kA)

for the set of primes of kA that are controlled by B. Then the maps

SpecB(kA)↔ Spec(kB)

P 7→ P ∩ kB

QkA 7→Q

are well-defined and mutual inverses, and preserve faithfulness.

Proof. If P is a prime ideal of kA, then P ∩ kB is an A-prime ideal (and hence a

prime ideal) of kB by Lemma 8.1.2(i).

Conversely, note that, as B is isolated in A, the quotient A/B is again free abelian pro-
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p; so we may write A = B⊕C, where the natural quotient map A→ A/B induces an

isomorphismA/B ∼= C. Now, ifQ is a prime ideal of kB, then kA/QkA = (kB/Q)[[C]]

is a power series ring with coefficients in the commutative domain kB/Q, and is hence

itself a domain.

It follows from [3, Lemma 5.1] that QkA ∩ kB = Q, and by assumption, if P is

controlled by B then we already have (P ∩ kB)kA = P .

Now suppose the prime ideals P � kA and Q � kB correspond under these maps.

Then, again viewing A as B ⊕ C, we may similarly consider kA/P as the completed

tensor product kB/Q⊗̂
k
kC. Then the map A→ (kA/P )× can be written as

B ⊕ C → (kB/Q)× ⊕ (kC)× . (kB/Q⊗̂
k
kC)×

(b, c) 7→ ((b+Q), c),

so it is clear that P is faithful if and only if Q is faithful.

Lemma 9.1.2. Let A, B, k be as in Lemma 9.1.1. Take two neighbouring prime

ideals P � Q of kA, and suppose B controls P . Then

(i) h(P ) + dim(A/P ) = r(A),

(ii) h(Q) = h(P ) + 1,

(iii) h(P ) = h(P ∩ kB).

Proof.

(i) This follows from [25, Ch. VII, §10, Corollary 1].

(ii) This follows from [25, Ch. VII, §10, Corollary 2].

(iii) Under the correspondence of Lemma 9.1.1, any saturated chain of prime ideals

0 = Q0 � Q1 � · · · � Qn = P ∩ kB of kB extends to a chain of prime ideals
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0 = P0 � P1 � · · · � Pn = P of kA. As any two saturated chains of prime

ideals in kA have the same length [25, Ch. VII, §10, Theorem 34 and Corollary

1], we need only check that this chain is saturated.

Take two adjacent prime ideals I1 � I2 of kB, so that h(I2) = h(I1) + 1 [25, Ch.

VII, §10, Corollary 2] and I1kA � I2kA are prime. We will show that I1kA and

I2kA are adjacent by showing that their heights also differ by 1. By performing

induction on r(A/B), it will suffice to prove this for the case r(A/B) = 1, i.e.

kA = kB[[X]].

It is clear that, when R is a commutative ring, dim(R[[X]]) ≥ 1 + dim(R)

(where dim denotes the classical Krull dimension). But, giving R[[X]] the

(X)-adic filtration, we see that gr(R[[X]]) ∼= R[x]. By [18, 6.5.6], we have

dim(R[[X]]) ≤ dim(gr(R[[X]])) = dim(R[x]) = 1 + dim(R), where this last

equality follows from [18, 6.5.4(i)].

Hence, for any prime ideal I, we have

dim(kA/IkA)− dim(kB/I) = dim((kB/I)[[X]])− dim(kB/I) = 1.

But, from (i), we see that

dim(kA/IkA) = r(A)− h(IkA),

dim(kB/I) = r(B)− h(I),

and hence we conclude that h(I) = h(IkA). Setting I = I1, I2 now shows that

h(I2kA) = h(I1kA) + 1 as required.
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9.2 A finite-by-abelian result

We slightly extend the correspondence of Lemma 9.1.1.

Corollary 9.2.1. Let ∆ be finite-by-(abelian p-valuable) with finite radical ∆+, and

let Γ be a closed isolated normal subgroup of ∆ (so that, in particular, ∆+ ≤ Γ). Let

k be a finite field of characteristic p. If P is a prime ideal of kΓ, then Pk∆ is a prime

ideal of k∆. Finally, P is almost faithful if and only if Pk∆ is almost faithful.

Proof. We will use Notation 1.5.2. Let e ∈ cpik∆+
(P ).

Case 1. Suppose ∆ centralises e. Then there is an isomorphism

ψ : e · k∆→Mm(k′[[∆/∆+]])

for some finite field extension k′/k and some positive integer m, by Theorem 4.1.5;

under this map, ψ(e ·P ) = Mm(p) for some prime ideal p of k′[[Γ/∆+]] . It suffices to

show that pk′[[∆/∆+]] is prime, and that this correspondence preserves faithfulness;

but this now follows from Lemma 9.1.2(iii).

Case 2. If ∆ does not centralise e, take f = e|∆. Then there is an isomor-

phism θ : f · k∆ → Mn(e · k∆1), where ∆1 centralises e; under this isomorphism,

θ(f · Pk∆) = Mn(e · pk∆1) for some prime ideal p � kΓ1. It suffices to show that

pk∆1 is prime; but this follows from Case 1.

9.3 Faithful primes are controlled by ∆

First, recall the control theorem of [4, 8.6]:

Theorem 9.3.1. Let G be a nilpotent p-valued group of finite rank with centre Z.
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(i) If p is a prime ideal of kZ, then pkG is a prime ideal of kG.

(ii) If P is a faithful prime ideal of kG, then P is controlled by Z.

Proof. This is [4, 8.4, 8.6].

Lemma 9.3.2. Let G be finite-by-(nilpotent p-valuable), i.e. G = FNp(G). Then

Z(G/∆+) = ∆/∆+.

Proof. Given x ∈ G, the two conditions [G/∆+ : CG/∆+(x∆+)] <∞ and [G : CG(x)] <∞

are equivalent, as ∆+ is finite; this shows that we have ∆(G/∆+) = ∆/∆+. Take some

x ∈ ∆, so that x satisfies this condition: then, given arbitrary g ∈ G, there exists some

k such that gp
k
∆+ ∈ CG/∆+(x∆+), so that (x−1gx)p

k
∆+ = gp

k
∆+, and it now follows

from [13, III, 2.1.4] that x−1gx∆+ = g∆+. This shows that ∆/∆+ ≤ Z(G/∆+).

Conversely, we must have Z(G/∆+) ≤ ∆(G/∆+) by definition.

We extend Theorem 9.3.1 to:

Proposition 9.3.3. Let G be a finite-by-(nilpotent p-valuable) group.

(i) If p is a G-prime ideal of k∆, then pkG is a prime ideal of kG.

(ii) If P is an almost faithful prime ideal of kG, then P is controlled by ∆.

Proof. Adopt Notation 1.5.2. Let e ∈ cpik∆+
(p), and write f = e|G. It suffices to

prove that the ideal f ·pkG�f ·kG is prime. But, by the Matrix Units Lemma 4.3.1,

we have an isomorphism

f · kG ∼= Ms(e · kG1),

where G1 is the stabiliser in G of e, and under which f · pkG 7→ Ms(e · p1kG1) for

some G1-prime ideal p1 of k[[∆ ∩ G1]]. So, by Morita equivalence, it will suffice to

show that the ideal e · p1kG1 � e · kG1 is prime.
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Now recall from Theorem 4.1.5 that we have an isomorphism

ψ : e · kG1
∼= Mt(k

′[[G1/∆
+]])

under which e ·p1kG1 7→ qk′[[G1/∆
+]] for a (G1/∆

+)-prime ideal q of k′[[∆∩G1/∆
+]].

Hence we need now only show that qk′N � k′N is prime, where N = G1/∆
+.

Note that, as G1 is open in G, we have ∆(G1) = ∆ ∩ G1; and from Lemma 9.3.2,

∆(G1)/∆+ = Z(G1/∆
+). Hence, still writing N = G1/∆

+, we see that q is an

N -prime ideal of k′[[Z(N)]], and hence a prime ideal. But now qk′N is prime by

Theorem 9.3.1(i). This establishes part (i) of the proposition.

To show part (ii), take an almost faithful prime ideal P of kG. We would like to show

that P is a minimal prime ideal above (P ∩ k∆)kG. But this is clearly true when

∆+ = 1 by Theorem 9.3.1; and in the general case, another application of the Matrix

Units Lemma 4.3.1 and Theorem 4.1.5, as above, reduces to the case ∆+ = 1.

Hence, finally, we need only show that (P ∩ k∆)kG is prime; but P ∩ k∆ is a G-

prime ideal of k∆ (again by Lemma 8.1.2(i)), so we are done by part (i) of the

proposition.

Until the end of this section, we will write (−)◦ to mean
⋂
g∈G(−)g.

Corollary 9.3.4. Let G be a finite-by-(nilpotent p-valuable) group, and H an open

normal subgroup of G containing ∆. If P is an almost faithful G-prime ideal of kH,

then PkG is a prime ideal of kG.

Proof. Take a minimal prime Q of kH above P . Then we have Q◦ = P , so Q† is

finite (as G is orbitally sound). Hence Q is controlled by ∆, by Proposition 9.3.3(ii),

and by applying (−)◦ to both sides of the equality Q = (Q ∩ k∆)kH, we see that P

is also: P = (P ∩ k∆)kH. In particular PkG = (P ∩ k∆)kG. But now Proposition
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9.3.3(i) shows that (P ∩ k∆)kG is prime.

Proposition 9.3.5. Let G be a nilpotent-by-finite, orbitally sound compact p-adic

analytic group, and k a finite field of characteristic p > 2. Let H = FNp(G). If P is

an almost faithful prime ideal of kG, then P is controlled by H.

Proof. Let Q be a minimal prime ideal of kH above P ∩ kH. Then (Q†)◦ = P † ∩H

is finite, so, as G is orbitally sound, Q† is also finite. By [22, Corollary 14.8], in order

to prove that (P ∩ kH)kG is prime, it suffices to show that QkS is prime, where S is

the stabiliser in G of Q.

Let T = FNp(S). As H is a finite-by-(nilpotent p-valuable) open normal subgroup

of S, we see that H must be an open normal subgroup of T . It is also clear that

∆(H) = ∆(T ) = ∆(S) = ∆(G). Now, by Corollary 9.3.4, QkT must be prime;

and we have that (QkT )† is finite. Now, by Proposition 7.3.3, (QkT )kS = QkS is

prime.

Lemma 9.3.6. Let G be a nilpotent-by-finite compact p-adic analytic group, and let

H ≥ K be any two closed normal subgroups of G. Take P to be a prime ideal of kG.

Let Q be a minimal prime ideal of kH above P ∩ kH. If P is controlled by H and Q

is controlled by K, then P is controlled by K.
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Proof. By Lemma 8.1.2(ii), we have Q◦ = P ∩ kH, and so

(P ∩ kK)kG = ((P ∩ kH) ∩ kK)kG

= (Q◦ ∩ kK)kG

= (Q ∩ kK)◦kG as K is normal in G

= ((Q ∩ kK)kH)◦kG as H is normal in G

= Q◦kG as Q is controlled by K

= (P ∩ kH)kG = P as P is controlled by H.

Now back to:

Theorem 9.3.7. Let G be a nilpotent-by-finite, orbitally sound compact p-adic an-

alytic group, k a finite field of characteristic p > 2, and P an almost faithful prime

ideal of kG. Then P is controlled by ∆.

Proof. Proposition 9.3.5 shows that P is controlled by H. Let Q be a minimal

prime of kH above P ∩ kH: then Q◦ = P ∩ kH by Lemma 8.1.2(ii), so we see

that (Q†)◦ = P † ∩ H is finite, so (as G is orbitally sound) Q† must also be finite.

Hence, as Q is almost faithful, Proposition 9.3.3(ii) shows that it is controlled by ∆.

Now Lemma 9.3.6 applies.

Proof of Theorem K. This follows from Theorem 9.3.7.

9.4 Primes adjacent to faithful primes

Lemma 9.4.1. Let G be a nilpotent-by-finite, orbitally sound compact p-adic ana-

lytic group with ∆+ = 1, and let N be an isolated normal subgroup of G contained
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in ∆. Then we have either FNp(G/N) = FNp(G)/N or N = ∆ = FNp(G).

Proof. Write H = FNp(G), and Ĥ for the preimage of Ĥ/N = FNp(G/N).

If G = FNp(G), then we clearly have FNp(G/N) = FNp(G)/N for any closed normal

subgroup N . So suppose that H � Ĥ ≤ G, and take some z ∈ Ĥ \ H. Now

conjugation by z induces the automorphism x 7→ xζ on H/H ′ (where H ′ denotes the

isolated derived subgroup), and hence also on H/H ′N , for some ζ ∈ t(Z×p ) (Lemma

2.4.2) satisfying ζ 6= 1 (Lemma 7.2.1).

If H/H ′N has nonzero rank, we may take an element x ∈ H whose image in H/H ′N

has infinite order; and now the image in Ĥ/H ′N of 〈x, z〉 is not finite-by-nilpotent,

contradicting the definition of Ĥ. So we must have H = iH(H ′N).

In particular, this implies that H = iH(H ′Z), where Z = Z(H) = ∆(G), and so, by

Lemma 7.2.3, we see that H is abelian, i.e. H = ∆. Furthermore, this implies that

H ′ = 1, and as N is already H-isolated orbital, the equality H = iH(H ′N) simplifies

to give H = N . This is what we wanted to prove.

Remark. If G is a compact p-adic analytic group, H is a closed normal subgroup, and

Q is a G-stable ideal of kH, then Q† = (Q+ 1) ∩H is normal in G.

Lemma 9.4.2. Let G be a nilpotent-by-finite, orbitally sound compact p-adic ana-

lytic group, and let k be a finite field of characteristic p > 2. If Q is a G-prime ideal

of k∆, and FNp(G/Q
†) = FNp(G)/Q†, then QkG is a prime ideal of kG.

Remark. The hypothesis

FNp(G/Q
†) = FNp(G)/Q† (9.4.1)

has the following consequence. LetG be a nilpotent-by-finite, orbitally sound compact

p-adic analytic group with ∆+ = 1, k a finite field of characteristic p > 2, and let
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P � Q be adjacent prime ideals of kG, with P almost faithful. Then P is controlled

by ∆, by Theorem 9.3.7. Consider (Q ∩ k∆)†: if this is not equal to ∆, then by

Lemma 9.4.1, the hypothesis (9.4.1) is satisfied. So suppose it is equal to ∆: then

Q contains the ideal ker(kG → k[[G/∆]]) (the augmentation ideal of ∆). Now, if

FNp(G) = ∆, then kG/Q is a finite prime ring, which is therefore simple, and so Q

must be a maximal ideal of kG of iG(∆) = G; otherwise, we again have (9.4.1) by

Lemma 9.4.1.

That is, under these conditions, we always have (9.4.1) unless Q is a maximal ideal

of kG and G is virtually abelian, in which case Q† is open in G.

Proof. Write H = FNp(G).

As Q is a G-prime, we may write it as
⋂
g∈G I

g for some minimal prime ideal I

above Q. Suppose the G-orbit of I splits into distinct H-orbits O1, . . . ,Or, and write

Pi :=
⋂
A∈Oi A. Then Pi is an H-prime of k∆, and

⋂r
i=1 Pi = Q. In particular, since

Pi is an H-prime of k∆, we have that PikH is prime by Proposition 9.3.3(i).

It remains to show that
(⋂

g∈G(PikH)g
)
kG is prime. By [22, Corollary 14.8], it

suffices to show that PikS is prime, where S = StabG(Pi).

Write p = PikH, and note that p† = P †i ≤ ∆. Now, if FNp(G)/∆+ is non-abelian, we

have FNp(S/p
†) = FNp(S)/p†. If, on the other hand, FNp(G)/∆+ is abelian, then

we must have Q† � ∆, and as Q† is H-isolated orbital, we have [∆ : Q†] = ∞. But

as G is orbitally sound, and Q† =
⋂
g∈G(P †i )g, we must have that Q† is open in P †i ,

so that in particular [∆ : p†] =∞. Hence again we have FNp(S/p
†) = FNp(S)/p†.

Write (·) for the quotient map S → S/p†. Now, to show that PikS = pkS is prime,

we need only show that pkS is prime. But p is a faithful prime ideal of kH, and

H = FNp(S), so by Proposition 7.3.3, we are done.

Lemma 9.4.3. Let k be a finite field of characteristic p > 2. Let G be a nilpotent-
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by-finite, orbitally sound compact p-adic analytic group, and let P � Q be adjacent

prime ideals of kG, with P almost faithful. Suppose that Q is not a maximal ideal

of kG. Then Q is controlled by ∆.

Proof. Q∩ k∆ is a G-prime of k∆, and so (Q∩ k∆)kG is prime by Lemma 9.4.2 and

the accompanying remark. But

P = (P ∩ k∆)kG ≤ (Q ∩ k∆)kG ≤ Q,

(with the equality as a result of Theorem 9.3.7), and P and Q are adjacent, so

(Q ∩ k∆)kG must equal either P or Q.

Let us assume for contradiction that (Q ∩ k∆)kG = P . Then we must have

P ∩ k∆ ≤ Q ∩ k∆ ≤ (Q ∩ k∆)kG = P,

and by intersecting each of these with k∆, we see that P∩k∆ = Q∩k∆. In particular,

by taking (·)† of both sides of this equality, we see that Q†∩∆ is finite (as P is almost

faithful).

Let N be an open normal nilpotent p-valued subgroup of G, and let Z = Z(N).

By Lemma 1.2.3(ii), Z = ∆(N) is a finite-index torsion-free subgroup of ∆, and so

Q† ∩ Z = 1. Now, as N is nilpotent and the normal subgroup Q† ∩ N has trivial

intersection with its centre, [23, 5.2.1] implies that Q† ∩ N = 1, and hence Q† must

be a finite normal subgroup of G. So Q† ≤ ∆+, and in particular Q† = Q†∩∆, which

we earlier determined is finite. Hence Q is almost faithful, and must be controlled

by ∆ by Theorem 9.3.7. In particular, we must have P ∩ k∆ 6= Q ∩ k∆. But this

contradicts our assumption.
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Chapter 10

Catenarity

10.1 The orbitally sound case: plinths and a height

function

Much of the material in this subsection is adapted from [24].

Until stated otherwise, G is an arbitrary compact p-adic analytic group, and k is a

finite field of characteristic p. We start by outlining our plan of attack:

Lemma 10.1.1. Let R be a ring in which every prime ideal has finite height. Suppose

we are given a function h : Spec(R)→ N satisfying

• h(P ) = 0 whenever P is a minimal prime of R,

• h(P ′) = h(P ) + 1 for each pair of adjacent primes P � P ′ of R.

Then R is a catenary ring.

Proof. Obvious.

Lemma 10.1.2. kG has finite classical Krull dimension, i.e. the maximal length of
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any chain of prime ideals is bounded.

Proof. The classical Krull dimension of kG is bounded above by Kdim(kG) by [18,

Lemma 6.4.5], which is equal to Kdim(FpG) by [18, Proposition 6.6.16(ii)], and this

is bounded above by the dimension (in the sense of [9, Theorem 8.36]) of G, which is

finite by definition (see the remarks after [9, Definition 3.12]).

Definition 10.1.3. Let V be a QpG-module, and suppose it has finite dimension as

a vector space over Qp. Take a chain

0 = V0 � V1 � · · · � Vr = V

of G–orbital subspaces – that is, Qp-vector subspaces of V with finitely many G-

conjugates, or equivalently Qp-vector subspaces that are QpN -submodules for some

open subgroup N of G. Assume further that this chain is saturated, in the sense that

it cannot be made longer by the addition of some G–orbital subspace Vi � V ′ � Vi+1.

Such a chain is necessarily finite, as it is bounded above in length by dimQp(V ) + 1.

We call the number r the G–plinth length of V , written pG(V ). If pG(V ) = 1, we say

that V is a plinth for G.

Remark. The number r is independent of the Vi chosen. Indeed, fix a longest possible

chain

0 = V0 � V1 � · · · � Vr = V

of G-orbital subspaces, and let G0 be the intersection of the normalisers NG(Vi), i.e.

the largest subgroup of G such that each Vi is a QpG0-module. G0 is open in G. Now,

given any chain

0 = W0 � W1 � · · · � Ws = V

of G-orbital subspaces, take H0 =
⋂s
j=1 NG(Wj), and note that G0 ∩ H0 is a finite-
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index open subgroup of G that normalises each Vi and Wj. Hence, by the Jordan-

Hölder theorem [11, Theorem 4.11], the chain Wj may be refined to a chain of length

r; so if the chain Wj is saturated, then s = r.

Definition 10.1.4. A G-group is a topological group H endowed with a continuous

action of G. For example, closed subgroups of G, and quotients of G by closed normal

subgroups of G, are G-groups under the action of conjugation.

Let H be a nilpotent-by-finite compact p-adic analytic group with a continuous action

of G. We aim to define pG(H). In fact, as plinths are insensitive to finite factors, we

may immediately replace H by the open subgroup formed by the intersection of the

(finitely many) G-conjugates of any given open normal nilpotent uniform subgroup

of H. Then there is a series

1 = H0 �H1 � · · ·�Hn = H (10.1.1)

of G-subgroups such that Ai = Hi/Hi−1 is abelian for each i = 1, . . . , n. Let

Vi = Ai ⊗
Zp
Qp for each i = 1, . . . , n, with G–action given by conjugation. In this

case, we define

pG(H) =
n∑
i=1

pG(Vi).

Lemma 10.1.5. pG(H) is well-defined, and does not depend on the series (10.1.1).

Proof. Apply the Jordan-Hölder theorem, as in the remark above.

For our purposes, the most important property of pG is that it is additive on short

exact sequences of G-groups, which also follows from the Jordan-Hölder theorem. We

record this as:

Lemma 10.1.6. Suppose that 1 // A // B // C // 1 is a short exact se-

quence of G-groups. Then pG(A) + pG(C) = pG(B).
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We now define Roseblade’s function λ. (Later, we will show that, in the case when G

is nilpotent-by-finite and orbitally sound, λ is actually equal to the height function

on Spec(kG).)

Definition 10.1.7.

λ(P ) =

 pG(P †) + λ(P π) P † 6= 1

hG(P ∩ k∆) P † = 1,

where P π is the image of P under the map

π : kG→ kG/(P † − 1)kG ∼= k[[G/P †]].

This definition is recursive, in that if P is an unfaithful prime ideal, then λ(P ) is

defined with reference to λ(P π); but P π is then a faithful prime ideal of kGπ, so this

process terminates after at most two steps.

We make the following remark on this definition immediately:

Lemma 10.1.8. Let G be a nilpotent-by-finite, orbitally sound compact p-adic an-

alytic group, k a finite field of characteristic p > 2, and P a faithful prime of k∆.

Then λ(P ) = h(P ).

Proof. λ(P ) is defined to be hG(P∩k∆). But, by Theorem 9.3.7 and Lemma 9.4.2, we

see that there is a one-to-one, inclusion-preserving correspondence between faithful

prime ideals of kG and faithful G-prime ideals of k∆, so that hG(P ∩k∆) = h(P ).

We return to the general case of G an arbitrary compact p-adic analytic group.

Lemma 10.1.9. Let P � Q be neighbouring prime ideals of kG, and write

π : kG→ kG/(P † − 1)kG ∼= k[[G/P †]].
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Then

λ(Q)− λ(P ) = λ(Qπ)− λ(P π).

Proof. Firstly, as P ≤ Q, we have P † ≤ Q†, so the map

ρ : kG→ k[[G/Q†]]

factors as

kG π //

ρ

22k[[G/P †]] σ // k[[G/Q†]].

We now compute λ(Q)− λ(P ) using Definition 10.1.7:

λ(Q)− λ(P ) = pG(Q†)− pG(P †) + λ(Qρ)− λ(P π)

= pG((Q†)π) + λ(Qρ)− λ(P π) by Lemma 10.1.6

= pG((Q†)π) + λ(Qπσ)− λ(P π) by definition of ρ

= pG((Qπ)†) + λ((Qπ)σ)− λ(P π) as (Q†)π = (Qπ)†

= λ(Qπ)− λ(P π) by Definition 10.1.7.

Remark. Suppose G is a nilpotent-by-finite compact p-adic analytic group, and sup-

pose we are given a subquotient A of G which is a plinth, with G-action induced from

the conjugation action of G on itself. Then it is easy to see that dimQp(A⊗
Zp
Qp) = 1.

(Roseblade calls such plinths centric.) Indeed, suppose A = H/K, where H and K

are closed normal subgroups of G with K contained in H. Then we may replace G

by an open normal nilpotent uniform subgroup G′, and A by A′ = H ′/K ′, where

H ′ = H ∩G′ and K ′ = iH′(K ∩G′); after doing this, we still have that A′ is a plinth

for G′, and that dimQp(A ⊗
Zp
Qp) = dimQp(A

′ ⊗
Zp
Qp). But, as G′/K ′ is nilpotent, and

A′ is a non-trivial normal subgroup, A′ must meet the centre Z(G′/K ′) non-trivially;

and as A′ is torsion-free, we must have that A′ ∩ Z(G′/K ′) is a plinth for G′, and so
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must be equal to A′. Hence G′ centralises A′, and its plinth length is simply equal to

its rank.

Again, we will write (−)◦ to mean
⋂
g∈G(−)g.

Lemma 10.1.10. Let G be a nilpotent-by-finite compact p-adic analytic group. Let

U be a G-prime of k∆, and write ρ : k∆→ k[[∆/U †]]. Then h(U) = hG(Uρ)+pG(U †).

Proof. Let A = Z(∆), and let U1 be a minimal prime of kA above U ∩ kA, so that

U ∩kA = U◦1 . Then hG(U) = h(U1) by Corollary 8.1.4, and so hG(Uρ) = h(Uρ
1 ). Now,

from Lemma 9.1.2(i), we have h(U1)+dim(kA/U1) = r(A) and h(Uρ
1 )+dim(kA/U1) = r(Aρ),

from which we may deduce that

h(U1) = h(Uρ
1 ) + r(A)− r(Aρ).

But r(A)− r(Aρ) = r(A∩ ker ρ) = pG(U † ∩A) by the above remark. Now this is just

pG(U †), as A is open in ∆.

Lemma 10.1.11. Let G be arbitrary compact p-adic analytic. Let H be a closed

normal subgroup of G, and let K be an open subgroup of H which is normal in G.

If P is a G-prime ideal of kH, then hG(P ) = hG(P ∩ kK).

Proof. [Adapted from [24, Lemma 29].] We know that P = Q◦ for some prime Q of

kH, and Q ∩ kK =
⋂
h∈H V

h for some prime V of kK. Hence P ∩ kK = V ◦. Then,

writing horb
G for the height function on G-orbital primes,

hG(P ) = horb
G (Q) by Lemma 8.1.2(ii)

= horb
G (V ) by Lemma 8.1.2(i)

= hG(P ∩ kK) by Lemma 8.1.2(ii).
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Here, we deduce from Theorem 9.3.7 and [24, proof of theorem H2] the following

corollary:

Theorem 10.1.12. Let G be a nilpotent-by-finite, orbitally sound compact p-adic

analytic group, and k a finite field of characteristic p > 2. Then kG is a catenary

ring.

Proof. Let P � Q be neighbouring prime ideals of kG. We will first show that

λ(Q) = λ(P ) + 1.

By passing to k[[G/P †]], we may assume that P is a faithful prime ideal, by Lemma

10.1.9. Hence, by Theorem 9.3.7 (and as p > 2), we have that (P ∩ k∆)kG = P . We

also have either that (Q ∩ k∆)kG = Q, by Lemma 9.4.3, or Q† ≥ ∆ by the remark

of Lemma 9.4.2; and so, in either case, we have P ∩ k∆ � Q ∩ k∆. These must be

neighbouring G-primes of k∆: indeed, if J is a G-prime strictly between them, then

again by Lemma 9.4.2 and the remark made there, we see that JkG is a prime ideal

of kG. JkG must then lie strictly between P and Q – indeed, if JkG = Q, then

intersecting both sides with k∆ shows that J = Q ∩ k∆, and likewise if JkG = P .

This is a contradiction.

Hence hG(Q∩k∆) = hG(P ∩k∆)+1. The right hand side is, by definition, just equal

to λ(P ) + 1; and we have λ(Q) = λ(Qρ) + pG(Q†), where ρ : G→ G/Q†. It remains

to show that this is equal to hG(Q ∩ k∆).

Case 1. Q† is not open in G. Then Q is controlled by ∆ by Lemma 9.4.3 and

the remark of Lemma 9.4.2, and so Qρ is controlled by ∆ρ, and in particular by

iGρ(∆
ρ) ≤ iGρ(∆(Gρ)). Write A = Z(∆(Gρ)) and B = A∩iGρ(∆

ρ): as Qρ is controlled

by iGρ(∆
ρ), we have that Qρ ∩ kA is controlled by B. Furthermore, we can write
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Qρ ∩ kA = q◦ for some prime q of kA, so that q is also controlled by B, and hence

λ(Qρ) = hG(Qρ ∩ k[[∆(Gρ)]]) by definition

= hG(Qρ ∩ kA) by Lemma 10.1.11

= h(q) by Corollary 8.1.4

= h(q ∩ kB) by Lemma 9.1.2(iii)

= hG(Qρ ∩ kB) by Corollary 8.1.4

= hG(Qρ ∩ k[[iGρ(∆
ρ)]]) by Lemma 10.1.11

= hG(Qρ ∩ k∆ρ) by Lemma 10.1.11.

We also have pG(Q†) = pG((Q ∩ k∆)†). Hence

λ(Q) = hG((Q ∩ k∆)ρ) + pG((Q ∩ k∆)†).

Now we are done by Lemma 10.1.10.

Case 2. Q† is open in G. We have already seen that this case only occurs when

G = iG(∆), and so λ(Qρ) = λ(0) = 0, and pG(Q†) = pG(G), and hG(Q∩k∆) = hG(Q∩kA)

= r(A). These are clearly equal, as A is open in G.

In order to invoke Lemma 10.1.1, it remains only to show that λ(P ) = 0 when P

is a minimal prime. But as all minimal primes are induced from ∆+, this follows

immediately from the definition of λ: we will have P † ≤ ∆+ (and hence pG(P †) = 0),

and P π ∩ k∆π will be a minimal G-prime of k∆π (and hence hG(P π ∩ k∆π) = 0).

Proof of Theorem B. This follows from Theorem 10.1.12.
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10.2 Vertices and sources

We now study a more general setting. Let G be an arbitrary compact p-adic analytic

group, and P an arbitrary prime ideal of kG.

Remark. Suppose G is orbitally sound and nilpotent-by-finite, N is a closed normal

subgroup of G, and I is a prime ideal of kG with N ≤ I† and [I† : N ] <∞. Writing

(·) for the natural map kG→ k[[G/N ]], it is clear that the prime ideal I � k[[G/N ]]

is almost faithful, and so, by Theorem 9.3.7, is controlled by ∆(G/N), and that I is

the complete preimage in kG of I, and is therefore controlled by the preimage in G

of ∆(G/N).

This motivates the following definition:

Definition 10.2.1. Let I be an ideal of kG, and N a closed subgroup of G. We say

that I is almost faithful mod N if I† contains N as a subgroup of finite index. We

also write ∇G(N) for the subgroup of NG(N) defined by

∇G(N)/N = ∆(NG(N)/N).

Diagrammatically:

G

NG(N) NG(N)/N

∇G(N) ∆(NG(N)/N)

N N/N

1
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We will extend this notion to ideals I with I† contained in N as a subgroup of finite

index.

Lemma 10.2.2. Let H be an open subgroup of N . Then there exists an open

characteristic subgroup M of N contained in H.

Proof. (Adapted from [22, 19.2].) Let [N : H] = n <∞. Now, as N is topologically

finitely generated, there are only finitely many continuous homomorphisms N → Sn.

where Sn is the symmetric group. Take M to be the intersection of the kernels of

these homomorphisms.

Lemma 10.2.3. Let N be a closed subgroup of G, and A = NG(N). Suppose I is an

ideal of kA, and I† ≤ N with [N : I†] <∞. Then there is a closed normal subgroup

M of A such that I is almost faithful mod M . Furthermore, this M can be chosen

so that ∇G(N) = ∇A(M).

Proof. Set H = I† in Lemma 10.2.2: then the subgroup M is characteristic in N ,

hence normal in A; M contains I†; and M is open in N , so we must have [I† : M ] <∞.

By definition, we have ∇G(N) = ∇A(N). Now, N/M is a finite normal subgroup of

A/M , so is contained in ∆+(A/M). Hence the preimage under the natural quotient

map A/M → A/N of ∆(A/N) is ∆(A/M). But this is the same as saying that

∇A(N) = ∇A(M).

When G is a general compact p-adic analytic group, we will use the following lemma

to translate between prime ideals of kG and prime ideals of kA for certain open

subgroups A of G.

Lemma 10.2.4. Let H be an open normal subgroup of G. Suppose P is a prime of

kG, and write Q for a minimal prime of kH above P ∩ kH. Let B be the stabiliser
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in G of Q, and let A be any open subgroup of G containing B, so that

H ≤ B ≤ A ≤ G.

Then there is a prime ideal T of kA with P = TG, and furthermore this T satisfies

T ∩ kH =
⋂
a∈AQ

a.

Proof. This follows from [22, 14.10(i)].

Definition 10.2.5. A prime P � kG is standard if it is controlled by ∆ and we have

P ∩ k∆ =
⋂
x∈G L

x for some almost faithful prime L� k∆.

Lemma 10.2.6. Let G be a nilpotent-by-finite compact p-adic analytic group and

H an open normal subgroup. Let P be a prime ideal of kG, and Q a minimal prime

of kH above P , so that P ∩ kH =
⋂
x∈GQ

x. If Q is a standard prime, then P is a

standard prime.

Proof. (Adapted from [22, 20.4(i)].) Write ∆ = ∆(G),∆H = ∆(H), and

P ∩ k∆ =
⋂
x∈G

Sx and Q ∩ k∆H =
⋂
y∈H

T y,

for prime ideals S � k∆ and T � k∆H . On the one hand,

P ∩ k∆H = (P ∩ k∆) ∩ k∆H

=

(⋂
x∈G

Sx

)
∩ k∆H

=
⋂
x∈G

(S ∩ k∆H)x ,
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but on the other hand,

P ∩ k∆H = (P ∩ kH) ∩ k∆H

=

(⋂
x∈G

Qx

)
∩ k∆H

=
⋂
x∈G

(Q ∩ k∆H)x

=
⋂
x∈G

T x.

Now, the conjugation action of G on ∆H has kernel CG(∆H), which contains CG(∆)

by Lemma 1.2.3(ii). But CG(∆) =
⋂

CG(a), where the intersection runs over a set

of topological generators a for ∆, and each CG(a) is open in G by definition of ∆.

Now, as ∆ is topologically finally generated, we see that CG(∆) and hence CG(∆H)

are also open in G.

That is, the conjugation action ofG on ∆H factors through the finite groupG/CG(∆H),

and hence the intersections above are finite, so that (by the primality of T ), we have

S ∩ k∆H ⊆ T x

for some x ∈ G.

Now, by assumption, Q is standard, so T is almost faithful. This means that

S† ∩∆H ⊆ (T †)x

is a finite group, and so, since [∆ : ∆H ] < ∞, we have that S† is also finite, so S is

almost faithful.

It remains to show that S◦kG = P . By Proposition 7.3.3, we see that S◦kG = P ′ is
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a prime ideal of kG contained in P . Now,

(P ∩ kH)kG =

(⋂
g∈G

Qg

)
kG

=

(⋂
g∈G

(⋂
h∈H

T hkH

)g)
kG

=

(⋂
g∈G

T g

)
kG

= (P ∩ k∆H)kG by calculation above

⊆ (P ∩ k∆)kG = P ′ ⊆ P,

and as H is open and normal in G, we know from Lemma 8.1.2(i) that P is a minimal

prime above (P ∩ kH)kG, so that P = P ′.

Finally, the main theorem of this subsection:

Theorem 10.2.7. Let G be a nilpotent-by-finite compact p-adic analytic group, P

a prime ideal of kG, H an orbitally sound open normal subgroup of G, Q a minimal

prime ideal above P ∩kH, and N = iG(Q†). Then there exists an ideal L�k[[∇G(N)]]

with P = LG.

Remark. The subgroup N is a vertex of the prime ideal P , and the ideal L is a source

of P corresponding to the vertex H.

Proof. We follow the proof of [17, 2.3], as reproduced in [22, 20.5].

Trivially, H stabilises Q, i.e. H ≤ B := StabG(Q); and B normalises Q†. Set

N := iG(Q†). Now we must have NG(Q†) ≤ A := NG(N): indeed, if x ∈ G normalises

Q†, then it permutes the (finitely many) closed orbital subgroups K of G containing

Q† as an open subgroup, and hence it normalises N , which is generated by those K

(Definition 1.2.6).
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We are in the following situation:

G

A NG(N)

B StabG(Q)

∇G(N) H orbitally sound

iG(Q†) N

Q†

Now, Lemma 10.2.4 shows that there is a prime ideal T of kA with P = TG and

T ∩ kH =
⋂
a∈AQ

a. It will suffice to show the existence of a prime ideal L of

k[[∇G(N)]] with T = LA, by Lemma 8.2.2.

Let M be an open characteristic subgroup of N contained in Q†, whose existence is

guaranteed by Lemma 10.2.2. Write ∇ = ∇G(N), which we know is equal to ∇A(M)

by Lemma 10.2.3, and denote by (·) images under the natural map kA→ k[[A/M ]].

Now Q is a prime ideal of kH with M ≤ Q† an open subgroup, so Q is an almost

faithful prime ideal of kH; hence, as H is orbitally sound (Lemma 1.2.5(ii)), we see

that Q is a standard prime of kH.

But T ∩ kH =
⋂
a∈AQ

a clearly implies T ∩ kH =
⋂
a∈AQ

a
, by the modular law. Now

Lemma 10.2.6 implies that T is also a standard prime ideal of kA: that is, there is

an almost faithful prime ideal L of k[[∆(A)]] with T = L
A

. Lifting this back to kA,

we see that we have an almost faithful mod M prime ideal L of k∇ with T = LA as

required.

Proof of Theorem C(ii). This follows from Theorem 10.2.7.

165



We end this subsection with an important application of this theorem. Recall the

definition of nio(G) from Definition 2.1.5.

Corollary 10.2.8. Suppose G is a nilpotent-by-finite compact p-adic analytic group

which is not orbitally sound. Let P be a faithful prime ideal of kG. Then P is induced

from some proper open subgroup of G containing nio(G).

Proof. Write H = nio(G). H is orbitally sound by Theorem 2.1.6.

Let Q be a minimal prime ideal above P ∩ kH, so that N = iG(Q†) is a vertex for P

by Theorem 10.2.7. Then P is induced from ∇G(N), which is contained in NG(N),

and so P is induced from NG(N) itself by Lemma 8.2.2. But, as nio(G) is orbitally

sound, in particular it must normalise N (Theorem 2.1.6(i)). Hence, if NG(N) is a

proper subgroup of G, we are done.

Suppose instead that NG(N) = G, i.e. that iG(Q†) is a normal subgroup of G. Then,

for each g ∈ G, (Q†)g is a finite-index subgroup of iG(Q†) (Proposition 1.2.7); and

Q† is orbital in G, so there are only finitely many (Q†)g, and their intersection (Q†)◦

must also have finite index in iG(Q†). But (Q†)◦ = P † = 1, so in particular we have

iG(Q†) = ∆+, and hence P is induced from ∇G(N) = ∆, again by Theorem 10.2.7.

Hence, as nio(G) contains ∆, P must be induced from nio(G) itself.

10.3 The general case: inducing from open sub-

groups

Now we will proceed to show that kG is catenary.

Lemma 10.3.1. Let H be an open subgroup of G, and P a prime ideal of kG.

Suppose Q is an ideal of kH maximal amongst those ideals A of kH with AG ⊆ P .

166



Then Q is prime, and P is a minimal prime ideal above QG.

Proof. Suppose I and J are ideals strictly containing Q: then, by the maximality of

Q, we see that IG and JG must strictly contain P . Hence IGJG ⊆ (IJ)G [22, Lemma

14.5] strictly contains P , and so IJ strictly contains Q. Hence Q is prime.

P is clearly a prime ideal containing QG, so to show it is minimal it suffices to

find any ideal A of kH with P a minimal prime above AG. Let N be the nor-

mal core of H in G, and take A = (P ∩ kN)H : then by Lemma 8.2.2 we have

AG = (P ∩kN)G = (P ∩kN)kG, and by Lemma 8.1.2(i), P is a minimal prime above

this.

Lemma 10.3.2. Let H be an open subgroup of G with kH catenary. If P � P ′ are

adjacent primes of kG, and P is induced from kH, then h(P ′) = h(P ) + 1.

Proof. (Adapted from [16, 3.3].) Choose an ideal Q (resp. Q′) of kH which is maximal

amongst those ideals A of kH with AG ⊆ P (resp. AG ⊆ P ′). Then Q and Q′

are prime, and P (resp. P ′) is a minimal prime ideal over QG (resp. Q′G), by

Lemma 10.3.1. Hence, by Proposition 8.3.10, we see that it suffices to show that

h(Q′) = h(Q) + 1.

Suppose not. Then there exists some prime ideal I of kH with Q � I � Q′; and

we may choose a prime ideal J of kG which is minimal over IG. Then P ≤ J ≤ P ′.

But h(Q) < h(I) < h(Q′) implies (by another application of Proposition 8.3.10) that

h(P ) < h(J) < h(P ′), contradicting our assumption that P and P ′ were adjacent

primes.

Corollary 10.3.3. Let G be a nilpotent-by-finite compact p-adic analytic group, and

k a finite field of characteristic p. Then kG is a catenary ring.

Proof. (Adapted from [16, 3.3].) Take two adjacent prime ideals P � Q of kG, and
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assume without loss of generality that P is faithful. We proceed by induction on

the index [G : nio(G)]. When this index equals 1, we are already done by Theorem

10.1.12, so suppose not. Then Corollary 10.2.8 implies that P is induced from some

proper open subgroup H of G containing nio(G). As nio(G) is an orbitally sound

open normal subgroup of H, it must be contained in nio(H) (by the maximality of

nio(H)), and so we have [H : nio(H)] < [G : nio(G)]. By induction, kH is catenary,

so we may now invoke Lemma 10.3.2 to show that h(Q) = h(P ) + 1.

Proof of Theorem A. This follows from Corollary 10.3.3.
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